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In this short summary paper, a brief summary of Black Scholes type formulae for Normal model will
be given. Usually the underlying security is assumed to follow a lognormal process (or Geometric Brownian
Motion). However, there are some traders who believe that the normal process describes the real market more
closely than that of lognormal counterpart. The derivation of the formula will be proved mathematically
by the famous no-arbitrage argument (Hull[1]). Then, the Greeks (delta, gamma, theta, and vega) will be
computed by differentiation.

The idea of the theory is that The fair value of any derivative security is computed as the expectation
of the payoff under an equivalent martingale measure (Karatzas [2]). More specifically, the price is the
expectation of a discounted payoff under the risk neutral measure. This measure (or density) is a solution to
a parabolic partial differential equation driven by the underlying process (lognormal process). The detailed
statements will be shown below. Section following the next will show arguments concerning Normal model
that does not allow negative underlier price. Also brief experiments regarding how one can approximate
lognormal Black Scholes with Normal version will be explored with some experiments.

1 Analytic Formula

Theorem 1 (Analytic Formula for a Normal Black Scholes Model)

Let us assume that the current future price, strike price, risk free interest rate, volatility, and time to
maturity as denoted as F , K, r, σ, and T − t respectively. Alet us also assume that the current future price
follows the following Normal process:

dF = µdt + σdWt (1)

where µ is a constant drift.

Then, the fair values of call C and put P are expressed as :

C = e−r(T−t)[(F − K)N(d1) +
σ
√

T − t√
2π

e−d2
1/2] (2)

and

P = e−r(T−t)[(K − F )N(−d1) +
σ
√

T − t√
2π

e−d2
1/2] (3)
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where d1 = F−K
σ
√

T−t

Moreover, the Greeks (delta, gamma, vega, theta) are computed by simple differentiation of the above
formulas to give: (Note: Detail calculations will be shown below for more general audience)

Delta(Call) =
∂C

∂F

= e−r(T−t)[(F − K)
1√
2π

e−d2
1/2 1

σ
√

T − t
]

+e−r(T−t)N(d1) + e−r(T−t) σ
√

T − t√
2π

e−d2
1/2[− (F − K)

σ
√

T − t
][

1
σ
√

T − t
]

= e−r(T−t)N(d1) (4)

Delta(Put) =
∂P

∂F

= e−r(T−t)[(K − F )
1√
2π

e−d2
1/2 −1

σ
√

T − t
]

−e−r(T−t)N(−d1) + e−r(T−t) σ
√

T − t√
2π

e−d2
1/2[− (F − K)

σ
√

T − t
][

1
σ
√

T − t
]

= −e−r(T−t)N(−d1) (5)

Gamma(Call) = Gamma(Put) =
∂2C

∂F 2
(∗)

= e−r(T−t) 1√
2π

e−d2
1/2 1

σ
√

T − t

=
e−r(T−t)

σ
√

T − t

1√
2π

e−d2
1/2 (6)

( *Note: This is evident from the Put-Call parity in that by differentiating the Put-Call parity formula twice
with respect to the underlier establishes the equality of Put and Call for all option models ..)

V ega(Call) = V ega(Put) =
∂C

∂σ

= e−r(T−t)(F − K)
1√
2π

e−d2
1/2[− (F − K)

σ2
√

T − t
]

+e−r(T−t)

√
T − t√
2π

e−d2
1/2

+e−r(T−t) σ
√

T − t√
2π

e−d2
1/2[− (F − K)

σ
√

T − t
][− (F − K)

σ2
√

T − t
]

= e−r(T−t)

√
T − t√
2π

e−d2
1/2 (7)

( *Note: This is evident from the Put-Call parity in that by differentiating the Put-Call parity formula with
respect to σ establishes the equality of Put and Call for all option models ..)
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Theta(Call) =
∂C

∂t

= −re−r(T−t)[(F − K)N(d1) +
σ
√

T − t√
2π

e−d2
1/2]

−e−r(T−t)[(F − K)
1√
2π

e−d2
1/2(−1

2
F − K

σ(T − t)3/2
)]

−e−r(T−t)[
σ

2
√

2πt
e−d2

1/2]

−e−r(T−t)[
σ
√

T − t√
2π

e−d2
1/2(− (F − K)

σ
√

T − t
)(− (F − K)

2σ(T − t)3/2
)]

= −re−r(T−t)[(F − K)N(d1) +
σ
√

T − t√
2π

e−d2
1/2]

−e−r(T−t)[
σ

2
√

2πt
e−d2

1/2] (8)

Theta(Put) =
∂P

∂t

= −re−r(T−t)[(K − F )N(−d1) +
σ
√

T − t√
2π

e−d2
1/2]

−e−r(T−t)[(K − F )
1√
2π

e−d2
1/2(−1

2
F − K

σ(T − t)3/2
)]

−e−r(T−t)[
σ

2
√

2πt
e−d2

1/2]

−e−r(T−t)[
σ
√

T − t√
2π

e−d2
1/2(− (F − K)

σ
√

T − t
)(− (F − K)

2σ(T − t)3/2
)]

= −re−r(T−t)[K − F )N(−d1) +
σ
√

T − t√
2π

e−d2
1/2]

−e−r(T−t)[
σ

2
√

2πt
e−d2

1/2] (9)

(Proof)

We shall parallel the argument given in Hull [1]. The proof will be heuristic. Let us study the behavior
of the delta hedged portfolio which consists of long delta shares of future contract and short one derivative
in question. Say, call it Π. Let us also denote the value of derivative by g. Then, the value of the delta
hedged portfolio is given by:

Π = g − ∂g

∂F
F (10)

So applying Ito’s lemma using the SDE given in (1) into the changes of the above portfolio value, one
can get:
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∆Π = ∆g − ∂g

∂F
∆F

= (
∂g

∂t
+

∂g

∂F
µ +

1
2

∂2g

∂F 2
σ2)∆t +

∂g

∂F
σ∆Wt

− ∂g

∂F
(µ∆t + σ∆Wt) (11)

= (
∂g

∂t
+

1
2

∂2g

∂F 2
σ2)∆t

We want the avove quantity to be a martingale under the discounted expectation with risk free rate.
This is essentially the same as stating that the above quantity equals the gain from the risk free interest rate
for the portfolio value. So, we have:

∆Π = rΠ∆t (12)

Since it cost nothing to enter into a futures contract, one has:

Π = g (13)

Thus we have:

(
∂g

∂t
+

1
2

∂2g

∂F 2
σ2)∆t = rg∆t (14)

Therefore, we obtains the following parabolic PDE:

∂g

∂t
+

1
2

∂2g

∂F 2
σ2 = rg (15)

So, if the terminal payoff is given by g(T, F ) = f(F ), then by the application of Feynman-Kac (see
Karatzas and Shrieve[2]), one obtains the following solution:

g(t, x) = Ex[e−r(T−t)f(y)]

=
e−r(T−t)

σ
√

T − t
√

2π

∫ ∞

−∞
f(y)e−

(x−y)2

2σ2(T−t) dy (16)

where

f(y) =
{

(y − K)+ for Call
(K − y)+ for Put.

Therefore, the for the formula for the above can be simplifed by simply expanding the expression inside
the integral. The detail will be shown for more general audience.

For the call, we have:
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Call = g(t, F )
= EF [e−r(T−t)f(y)]

=
e−r(T−t)

σ
√

T − t
√

2π

∫ ∞

−∞
(y − K)+e

− (F−y)2

2σ2(T−t) dy

=
e−r(T−t)

√
2π

∫ ∞

−∞
(F + σ

√
T − t x − K)+e−

x2
2 dx

=
e−r(T−t)

√
2π

∫ ∞

(K−F )

σ
√

T−t

(F + σ
√

T − t x − K)e−
x2
2 dx

=
e−r(T−t)

√
2π

∫ ∞

(K−F )

σ
√

T−t

(F − K)e−
x2
2 dx

+
e−r(T−t)

√
2π

∫ ∞

(K−F )

σ
√

T−t

(σ
√

T − t x)e−
x2
2 dx

= e−r(T−t)[(F − K)N(d1) +
σ
√

T − t√
2π

e−d2
1/2] (17)

where d1 = F−K
σ
√

T−t

Similarly for the put, we have:

Put = g(t, F )
= EF [e−r(T−t)f(y)]

=
e−r(T−t)

σ
√

T − t
√

2π

∫ ∞

−∞
(K − y)+e

− (F−y)2

2σ2(T−t) dy

=
e−r(T−t)

√
2π

∫ ∞

−∞
(K − F − σ

√
T − t x)+e−

x2
2 dx

=
e−r(T−t)

√
2π

∫ (K−F )

σ
√

T−t

−∞
(K − F − σ

√
T − t x)e−

x2
2 dx

=
e−r(T−t)

√
2π

∫ (K−F )

σ
√

T−t

−∞
(K − F )e−

x2
2 dx

+
e−r(T−t)

√
2π

∫ (K−F )

σ
√

T−t

−∞
(−σ

√
T − t x)e−

x2
2 dx

= e−r(T−t)[(K − F )N(−d1) +
σ
√

T − t√
2π

e−d2
1/2] (18)

where d1 is defined similarly as in (17).
This is what we need to prove. The Greeks are obtained by simple differentiations which are worked out

in the statement of the theorem.

QED.
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2 Normal Process under the Bounded Negative Assumption

In the previous section, pricing scheme for the Normal Process is proved in more general setting. That is
the underling prices are allowed to become negative. In this section, the modified option formulas will be
derived where underlier price can not fall below certain number, say −R.

Using the same notations as in the previous section, we have the following PDE for non negative underlier
process.

∂g

∂t
+

1
2

∂2g

∂F 2
σ2 = rg

g(T, F ) = f(F )
F ≥ −R (19)

This is a problem constrained in the half plane in F axis. The solution of the above PDE can be solved
by transforming the above PDE into a typical PDE problem for the entire F axis. This is done by extend-
ing the terminal function f(F ) into f−R(F ) which is basically an odd extention of the original function f(F ).

Thus, the unique solution exists for this PDE (John [4]), and given by:

g(t, x) = Ex[e−r(T−t)f(y)]

=
e−r(T−t)

σ
√

T − t
√

2π

∫ ∞

−∞
f−R(y)e−

(x−y)2

2σ2(T−t) dy

=
e−r(T−t)

σ
√

T − t
√

2π

∫ ∞

−R

f(y)[e−
(x−y+R)2

2σ2(T−t) − e
− (x+y−R)2

2σ2(T−t) ]dy (20)

where

f(y) =
{

(y − K)+ for Call
(K − y)+ for Put.

Therefore the formula for the Call option is given by expanding the messy expression in (20) as:

Call = g(t, F )
= EF [e−r(T−t)f(y)]

=
e−r(T−t)

σ
√

T − t
√

2π

∫ ∞

−∞
f−R(y)e−

(F−y)2

2σ2(T−t) dy

=
e−r(T−t)

σ
√

T − t
√

2π

∫ ∞

−R

f(y)[e−
(F−y+R)2

2σ2(T−t) − e
− (F+y−R)2

2σ2(T−t) ]dy

=
e−r(T−t)

σ
√

T − t
√

2π

∫ ∞

−R

(y − k)+[e−
(F−y+R)2

2σ2(T−t) − e
− (F+y−R)2

2σ2(T−t) ]dy

=
e−r(T−t)

√
2π

∫ ∞

(K−F−R)

σ
√

T−t

(F + σ
√

T − t x + R − K)+e−
x2
2 dx

+
e−r(T−t)

√
2π

∫ ∞

(K+F−R)

σ
√

T−t

(−F − σ
√

T − t z + R − K)e−
z2
2 dz

= e−r(T−t)[(R + F − K)N(d1) +
σ
√

T − t√
2π

e−d2
1/2]
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−e−r(T−t)[(R − F − K)N(d2) +
σ
√

T − t√
2π

e−d2
2/2] (21)

where d1 = R+F−K
σ
√

T−t
, and d2 = R−F−K

σ
√

T−t

Similarly for put, we have:

Put = g(t, F )
= EF [e−r(T−t)f(y)]

=
e−r(T−t)

σ
√

T − t
√

2π

∫ ∞

−∞
f−R(y)e−

(F−y)2

2σ2(T−t) dy

=
e−r(T−t)

σ
√

T − t
√

2π

∫ ∞

−R

f(y)[e−
(F−y+R)2

2σ2(T−t) − e
− (F+y−R)2

2σ2(T−t) ]dy

=
e−r(T−t)

σ
√

T − t
√

2π

∫ ∞

−R

(k − y)+[e−
(F−y+R)2

2σ2(T−t) − e
− (F+y−R)2

2σ2(T−t) ]dy

=
e−r(T−t)

√
2π

∫ (K−F−R)

σ
√

T−t

−∞
(K − F − σ

√
T − t x − R)+e−

x2
2 dx

+
e−r(T−t)

√
2π

∫ ∞

(K+F−R)

σ
√

T−t

(K + F − σ
√

T − t z − R)e−
z2
2 dz

= e−r(T−t)[(K − F − R)N(d1) +
σ
√

T − t√
2π

e−d2
1/2]

−e−r(T−t)[(K + F − R)N(d2) +
σ
√

T − t√
2π

e−d2
2/2] (22)

where d1 = R+F−K
σ
√

T−t
, and d2 = R−F−K

σ
√

T−t

Let us compare the result with the results from the previous section. Leting R = 0 in the expression (21)
gives:

Call = e−r(T−t)[(F − K)N(d1) +
σ
√

T − t√
2π

e−d2
1/2]

−e−r(T−t)[(−F − K)N(d2) +
σ
√

T − t√
2π

e−d2
2/2] (23)

where d1 = F−K
σ
√

T−t
, and d2 = −F−K

σ
√

T−t

Since d2 term is such a large negative quantity, the term −e−r(T−t)[(−F − K)N(d2) + σ
√

T−t√
2π

e−d2
2/2] is

a very small quantity.
Thus, the call price becomes:

Call ≈ e−r(T−t)[(F − K)N(d1) +
σ
√

T − t√
2π

e−d2
1/2] (24)

which is the same result as the one given in the previous section.
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Actually, the the second term is so small that one can replace the above relation with equality in most
practical cases. The identical argument can be made for the put as well.

The above price have a very nice theoretical property when σ is extremely large. The expressions (2)
and (3) blows up to infinity when we let σ → ∞

Without the loss of generality, let us assume R = 0 as before. Then taking the limit of the expression
(21) gives:

lim
σ→+∞ Call = lim

σ→+∞ e−r(T−t)[(F − K)N(d1) +
σ
√

T − t√
2π

e−d2
1/2]

lim
σ→+∞−e−r(T−t)[(−F − K)N(d2) +

σ
√

T − t√
2π

e−d2
2/2]

= e−r(T−t)(F − K) + lim
σ→+∞ e−r(T−t) σ

√
T − t√
2π

[e−d2
1/2 − e−d2

2/2]

= e−r(T−t)(F − K) + lim
σ→+∞ e−r(T−t) σ

√
T − t√
2π

[
∞∑

n=1

((−(F−K)2

2(T−t) )n − (−(F+K)2

2(T−t) )n)

σ2nn!
]

= e−r(T−t)(F − K) (25)

Similarly for put, we have:

lim
σ→+∞ Put = e−r(T−t)(K − F ) (26)

Thus, as the volatility σ blows up to infinity, the price is bounded above by constant for both call and
put.

8



3 Approximation Experiments

In practice, option prices are given in the market and one ends up computing implied volatility for a particular
option. Suppose one is given an implied volatility for the lognormal model but wants to use normal model
to compute its greeks (delta, gamma, vega, and theta). This is usually dealt with approximating σ(Normal)

by letting σ(Normal) = Ĝσ(Lognormal), Where Ĝ is a scaling constant. What kind approximations can one
make? The popular choice is to set Ĝ = K (strike), or Ĝ = F (future price). Then use these into the Normal
model. These approximations display reasonable closeness to the actual lognormal price. Brief experiments
have shown that taking the average of these two Ĝ = (F + K)/2 gives very approximation to the lognormal
price. Since, this paper is intended to be a very short paper, brief explanation of the experiments with some
graphs would be shown below.

The test is performed on European Eurodollar future option Call where strike is 98.25, days to expiration
is 22 days, and risk free rate is set to 1.701 %. We took a ranges of market option prices from 0.05 to 0.13
and future prices from 97.8 to 98.3. For a given input price and a future price, Newton’s method was used
to compute Lognormal implied vol. Then this implied vol is scaled appropriately and inserted into Normal
formulas.
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Figure 1: Eurodollar future Call. The top graph is the price surface using Normal model with ’spot’ as
the scaling factor. The bottom surface is the original Lognormal price surface. Note that Normal price is
somewhat overstating the price.
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Figure 2: Eurodollar future Call. The top graph is the price surface using Normal model with ’strike’ as
the scaling factor. The bottom surface is the original Lognormal price surface. Note that Normal price is
somewhat understating the price in this case.
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Figure 3: Eurodollar future Call. The top graph is the price surface using Normal model with (’strike’ +
’spot’)/2 as the scaling factor. The bottom surface is the original Lognormal price surface. Note that Normal
price is much closer to the actual price in this case.
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Figure 4: Eurodollar future Call. The error showing the difference between The Lognormal model and
Normal model with (’strike’ + ’spot’)/2 scaling. Note that the error increases as the option becomes far in
the money.
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