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Problem Formulation

VAR: Definition Given a portfolio value V,
and an initial portfolio value v,. For a given
confidnce p, VAR is defined as a real number
vp — Vo Satisfying:

P(vap):p

Problem: Regular MC loses accuracy for rare
event simulation:(p ~ 0.01)

Objective: Compute VAR Probability Accu-
rately.

Solution: Importance Sampling
[49(z)f(x)dx = ng(a:)f( )ﬂ'(ib‘)dx with smaller
variance. f(x)= Orlglnal Densnty, m(z) = Im-
portance Twisted Density.



Importance Sampling

Most likely points in the VAR region

max
ne f(x)
where
flz) = 1 —sal g b

(Qw)d/2|zx|1/2€

Basis of Large Deviation Theory
e Analytic Approximation (GHS, 2000)
e Non-Linear Optimization (Glass, 1999)

Rare events happen in predictable ways.



Solutions Proposed (Motivated by the
Large Deviation Theory):

(Method I) Importance Sampling based on
non-linear optimization (following Glass(1999))
with better Importance Sampling Twist Den-
Sity .

Target: Portfolios with explicitly known den-
Sity.

(Method II) Importance sampling based on
stochastic optimization combined with the
Metropolis Hasting M (RT?) algorithm with a
clever choice of my.

Target: High dimensional portfolios without
explicitly known density, or containing path-
dependent options.



Method 1

f: Multivariate Correlated Gaussian
(Price: S; = C1e%2%)

B maximizes f ober By = (V < v).

e T~ f shifted to mean 3

e T~ Simple exponential normal to 0By

Sampling method: Independent samples from

.
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Exponential Twist For Importance
Sampling

Form exponential twist me in the direction xzg
(z1 coordinate) perpendicular to the VAR sur-
face V = v at each local minima 3, and gaus-
sian density mg in other directions (x; coordi-
nates, k =2,3,...,d), n = |zg].

me(z1) = pe M@= 2y > B

8% = 8T - wq| if By, € H (i.e.,By is convex)
iyl - uq| otherwise (i.e.,B, is concave).

where y is the point on the ellipse: y! - > 1.
y' =818

d
m(x) = || mg(xp) me(z1)
k=2



Construction of Exponential Twist (Convex Case)
- XB:Z_l B

n=pe 6B
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Construction of Exponential Twist (Concave Case)
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Twist for Multiple Local Minima

For 3; with twist density ng (), i« = 1,2,...m,
form the following twist:

m(x) = Z a;mg. ()
1=1

where z € R%, and a; IS a weighting factor such

Weight factor selected according to the rela-
tive importance of each local minima:

Vo= 1B
‘ 7]?:1 f(ﬁk)
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The Laplace Principle (One Dimension
Case: Similar for more General Cases:

Appendix C)
P(B)) = % ;wu—;;+3y+di»
M2(By) = e—WQN/LEQU[l—-(Qlyz o )4]4— o)

2

2WU2
where M7 = the second moment under the
gaussian twist, and Me2 — the second moment
under the exponential twist.

M?(By) = e~

1- 5+ 2140

Based on the Larege Deviation Theory, both
Gaussian Twist and Exponential Twist are Aymp-
totically Efficient. (i.e., MQQ(BU) ~ e"”Q, and

MZ2(By) ~ e—° for large v).
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The Exponential Twist is More Efficient

The Variances are compued as:

2

M? —p? = ¢’ [l— = +o(i)]
g V2mv 2 V21 02
2
5e7Y 1
2 2
Me — P — 27‘(’?)6 [1 + 0(?)_8)]

Many Leading Terms Cancel for M2 — p2.

M2 — p? \/27rv5[1 Loty
pr— _— — o\ —
M2 — p2? 5 2  \27mv V2
M2—p2
When v = 2.32 4 — 11.21.
v 3 6,]w3_p2
M2— 2
AS?)—%CD,]wé_p ~ Cv®

The Exponential Twist is more efficient by a
factor of v°. This is true even for multiple local
minima cases (See Next Graphs).
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Y Gaussian Underlier

2 Dim Scatter Graph for Both VAR Regions @ (p=0.01): Concave Off
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Y Gaussian Underlier
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Test Results

(1) 10 Short Calls, 5 Short Puts.

(2) 10 Long Calls, 5 Long Puts.

(3) 10 Long Calls, 5 Short Puts.

(4) 10 Short Calls, Puts Delta Hedged *.

(5) 10 DAO Short Calls, 5 Short Puts.

(6) 10 DAO Short Calls, Puts Delta Hedged *.
(7) 10 DAO Short Calls, CON Puts Delta Hedged
*

(8) 10 DAO Short Calls, DAO Puts Delta Hedged
%

(9) 10 DAO Short Calls, 10 Long DAI Calls .
(* involves more than one local minima)
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Table 2.1: Variance Ratio Test: GHS
Twist vs Gaussian Twist with

Optimization

Port. GHS Ratio Gaussian Ratio
(1) 3.20013E+401 3.31234E+01
(2) 3.41234E+401 2.83456E+4-01
(3) 3.31233E+4-01 3.12223E+01
(4)* 1.75335E+401 2.12234E+401
(5) 1.04843E+401 1.92334E+01
(6)* 9.18233E+00 1.38283E+401
(7)* 3.12344E-01 1.21314E+01
(8)* 7.34232E+400 1.34212E+401
(9) 3.23423E+401 3.81234E+01

(* involves more than one local minima)

Port. = Portfolio

GHS Ratio = Variance ratio by GHS Method
(Appendix B)

Gaussian Ratio = Variance ratio by Gaussian
Twist with Optimization.
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Table 2.2: Variance Ratio Test: Gaussian
Twist vs Exponential Twist

Port. Gaussian Ratio | Exponential Ratio
(1) 3.31234E+01 1.29874E+402
(2) 2.83456E4-01 1.31235E+402
(3) 3.12223E+01 4.35323E+02
(4)* 2.12234E+401 4.65234E-+401
(5) 1.92334E+01 4.21433E+01
(6)* 1.38283E+401 4.87683E+01
(7)* 1.21314E+01 3.21314E+401
(8)* 1.34212E+01 3.94342E+401
(9) 3.81234E+01 1.12434E+403

(* involves more than one local minima)

Port.

— Portfolio

Gaussian Ratio = Variance ratio by Gaussian
Twist with Optimization.

Exponential Ratio = Variance ratio by EXpo-
nential Twist with Optimization.
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Method II

f(x) can be high dimensional.
V(X)) may contain path dependent options.
Explicit optimization may be impractical.

Solution:

7_‘_0(33) ~ f(z) - e—@-maX(V(m),v), >0

(1) Sample my using Metropolis M (RT)? Markov
Chain Monte Carlo (MCMCQC).

(2) Choose 0 adaptively so that V < v for the
half of the samples (i.e., Ey[sign(V —v)] =
0).

Robbins-Monro algorithm

1
Ont1 = On + - (sign(V —v))
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New Exponential Twist for MCMC

mo(x) = C(0) - f(z) - e OMXWV(@)v) g~ 0
e The twist f(z) e V() is common.

e S~ eX and V(z) = —S gives t ~ 6_$2/2+96$,
unbounded.

e max(V(x),v)) avoids potentially unbounded
mo(x).
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Metropolis Hasting M (RT)? Algorithm

(1) Markov Chain Monte Carlo (MCMCQC)

P(X,41 €Al Xp =2) = /AT(:E|y)dy, AcC R?

(2) Rejection Algorithm

T(zly) = alz|y)q(ylz) +

52 (y)(1 = [ a(ely)alyla)dy)
q(z|y)m(y)
q(y|z)m(z)
a(x|y) = Acceptance Probability of y from .
q(y|r) = Proposal Density of Sampling y given

a(zly) = 1A

I.
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Metropolis Hasting M (RT)? Algorithm

Detail Balance

T($|y) ) 7T($) — T(y|$) ) ﬂ-(y)7 V:U,y, - Rd7x # Yy

Stationarity

[, T@la)n(y)dy = n(x) Va,ye A

Detail Balance — Stationarity

JaT(ylz)m(y)dy = [4 T (z|y)m(z)dy
= 7(z) [, T(z|y)dy = 7(x)
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Metropolis Hasting M (RT)? Algorithm

(1) Given X,, sample Y, from some proposal
ditribution q(y|lx = Xn)

(2) Sample £ from uniform distribution on [0, 1].

: ol _ q(Xn|Yn)7(Yn)
(3) Accept Y, with probability = CAD IO AL

: : q(Xn|Yn)m(Yn)
That is, if £ < TV X)) (XY then accept

the it and let X, 1 = Yh.

(4) If step (3) is not satisfied, then reject it
and let X, 11 = Xn.

(5) Repeat the above steps (1)-(4) for the rest
of sampling.
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Metropolis-within-Gibbs Algorithm

This is a multi-dimensional version of Metropo-
lis Hasting M (RT)? Algorithm. One dimen-
sional Metropolis algorithm is applied one co-
ordinate at a time.

(X1, X2,..,X)) — (X3,X2,.., X9
(X3, X3,.,XH — ..
(X3, X3,...,X9) — (X3,X3,..,X9)

(X x2 ..,x% ) —» (x1,x2 ..,xH

(1) Sequential Scan Metropolis-within-Gibbs
Algorithm

Each Coordinate is sampled sequentially in a
fixed order.

(2) Random Scan Metropolis-within-Gibbs
Algorithm
Each Coordinate is sampled in random order.
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New Algorithm for VAR Probability
Computation

Perform Metropolis-within-Gibbs Algorithm

q(XHY P )m (V)
a(Y7| X)) m(X7)

o g( XY ) (V) _
Thatisif¢ < J(VF X R r (XY thenlet X, =
(xt, .Yk . .Xxd)

(1) Accept with Probability =

(2) If step (1) is not satidfied, then reject it
and let X, .1 = (X},.. Xk, .. X3).

(3) Update 6,41 by 0,41 = Hn—l—%-sign(V—v).

Make sure to record all the values of {6,},
and {V,}, and Go to step (1)
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Control Normalization Constant by
Sampling from Conditional Probability

(1: More Accurate Near the Center) 3§ runs
of the Regular Monte Carlo to compute p; =
P(V <wy). (v1 > v is chosen to approximately
corresponds to about p; = 0.1 or even p; = 0.5
heuristically).

(2: More Accurate Near the Tail) %" runs
of the Metropolis to compute the conditional
probability po = P(V < v|V < wvq).

The Final VAR Probability = p1p»>.

Effective Error = 165 + €1po> + eop1 where ¢4
= the error for the fist run, e = the error for
the second run.

(Bayes Rule)

P(V < ’Ul)P(V < ’U|V < ’vl)
PV <v}n{V <wv1})
P(V < ’01)

P(V <wv) _
PV <oy LV <)
26
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Theoretical Justification

(1: Lyapunov Condition) : Existence of the
Lyapunov function W (0) = o (0—0%)2™m

(2: A-Stability) : 0 is contained in a compact
set K C RT.

(3: Geometric Ergodicity) : For a fixed 6,
the chain is Geometric Ergodic (Rosenthal(2001))

(4: Continuity of Ty with respect to 6)

(5: Slowly Decreasing Condition) : Auto-
matically satisfied by Z% = 00, Z# < 00

By Delyon (2000), 8, — 6* such that Eg«(sign(V —
v) = 0 almost surely.
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Application

VAR for Path Depensent Options : Each
path corresponding to different times are con-
sidered as an independent variable. Brownian
Motion: B;_ is independent of Bg,t > s.

T {51,52,...,5%}

{Z1Vi1, Tovio — 1t ,---fd\/td—td—l}

o2
S(t;) = S(0)el" "B [Ti _, eoifk,

o2 1—1
S(tz) = S(O)e(r_ )t H eo'zwk eazwz — S(tz 1)€O'ZwZ
k=1
recursively.

Problem Formulation

E.g. Asian Call

[ —'rT( Z

@ _ K)+]
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Pricing Basket Option on a Portfolio

Application for Pricing: Far-out-of-the money
puts or calls on baskets (For Insuarance pur-
pose to hedge against extreme risk).

Basket Call Price:
27{\;1(,0 _ V)—I—GHmax(V,’U)
ZN . efOmaz(V,v)
1=

under the new Girsanov measure mg = fe—9maz(V,v),

Intuition:
9= C - fe—Hma,x(V,v) — . fe—Qmaw(V—v,O)

The limiting distribution tends to be centered
around the set V = v.

Approach: To treat V as a random number,
not its underlying risk factors. The risk factors
are the part of the system, but they are all put
in the black box approach as this algorithm
implicitly find the optimal point based on the
behavior of the random number V.
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Experiments

[1] 10 long Asian call with strike = 100, the
time grid size equal to 10 equal intervals with
final maturity time = 0.05. This results in 10
effective dimensions.

[2] 10 short Asian put with strike = 100. The
effective dimension is the same as the above.
[3] 10 long lookback call positions with effec-
tive dimension of 10. The gridding was done
the same way as the Asian case above.

[4] 10 long lookback call positions with effec-
tive dimension of 30. The gridding was done
the same way as the Asian case above.

[5] 10 long Americal call option with effective
dimension of 5. The exercise times reported
by Binomial tree are (0.03, 0.035, 0.04, 0.045,
0.05).

[6] 10 long American call option with effective
dimension of 17. The gridding for the bino-

mial tree was increased so that it resulted in
30



17 instances of exercise times.

[7] Basket option with American option in (6)
plus 10 short European calls in 2 dimensions, 5
long European puts in the same dimension as
the call, 5 digital call in another 2 dimensions
, 6 digital puts in the same dimension as the
previous digital call. The blockwide correlation
is all set to 0.5. This results in the effective
dimension of 17 + 2 4+ 2 = 21.

[8] Basket Option with American Option in
(6) plus separate butterfly positions in 6 di-
mensions block correlated with correlation =
0.5: one long call with strike = 90, one long
call with strike = 110, and 2 short calls with
strike =100.



[IMCMC Metropolis-within-Gibbs
Algorithm Variance Ratio Test Results]

Probability ~ 1.0E-002;

Portfolio

Variance Ratio

Autocorrelation

3.427232E+4-000

1.544545E+-001

3.012343E+000

1.685677E+001

3.252323E+000

1.532123E4-001

2.042234E+-000

3.114677E+4-001

4.566678E+000

8.123445E+-000

3.023355E+4-000

1.912424E+-001

2.484545E+4-000

2.342456E4-001

OINO O P WNE

2.364311E4-000

2.645677E4-001

(* is a portfolio with multiple local minima)
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Scattered Underlier Risk Factor Plot
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Summary

(I.I.D. Solution) Importance Sampling based
on Non-Linear Optimization with Exponential
Twist Density .

Conclusion: Works well for almost all portfolios
with explicitly known density as long as all local
minima are covered by this twist.

(MCMC Solution) Importance Sampling based
on Metropolis MCMC with a clever choice of my
where 0 is chosen adaptively using the Robbins-
Monro algorithm.

Conclusion: Works well for our portfolios.
Issues: Sampling could be trapped in one of
the local minima potentially missing many other
local minima. The reduction of the autocorre-
lation time decreases the variance further.
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