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Problem Formulation

VAR: De�nition Given a portfolio value V ,

and an initial portfolio value vo. For a given

con�dnce p, VAR is de�ned as a real number

vp � vo satisfying:

P(V � vp) = p

Problem: Regular MC loses accuracy for rare

event simulation:(p � 0:01)

Objective: Compute VAR Probability Accu-

rately.

Solution: Importance SamplingR
A g(x)f(x)dx =

R
A g(x)

f(x)
�(x)

�(x)dx with smaller

variance. f(x)= Original Density, �(x) = Im-

portance Twisted Density.
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Importance Sampling

Most likely points in the VAR region

max
V�v

f(x)

where

f(x) =
1

(2�)d=2j�xj1=2
e�

1

2
xT ���1

x �x

Basis of Large Deviation Theory

� Analytic Approximation (GHS, 2000)

� Non-Linear Optimization (Glass, 1999)

Rare events happen in predictable ways.
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Solutions Proposed (Motivated by the

Large Deviation Theory):

(Method I) Importance Sampling based on

non-linear optimization (following Glass(1999))

with better Importance Sampling Twist Den-

sity �.

Target: Portfolios with explicitly known den-

sity.

(Method II) Importance sampling based on

stochastic optimization combined with the

Metropolis Hasting M(RT2) algorithm with a

clever choice of ��.

Target: High dimensional portfolios without

explicitly known density, or containing path-

dependent options.
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Method I

f : Multivariate Correlated Gaussian

(Price: Si = C1e
C2xi)

� maximizes f ober Bv � (V � v).

� � � f shifted to mean �

� � � simple exponential normal to @Bv

Sampling method: Independent samples from

�.
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Exponential Twist For Importance

Sampling

Form exponential twist �e in the direction x�
(x1 coordinate) perpendicular to the VAR sur-

face V = v at each local minima �, and gaus-

sian density �g in other directions (xk coordi-

nates, k = 2;3; :::; d), �= jx�j.

�e(x1) = �e��(x1��
�); x1 � ��

j��j =
(
j�T � u1j if Bv 2 H (i.e.,Bv is convex)

jyT � u1j otherwise (i.e.,Bv is concave):

where y is the point on the ellipse: yT ���1
x �

yT = �T � �.

�g(xk) =
1p
2��k

e

�x2
k

2�2
Min k = 2;3:::; d

�(x) =
dY

k=2

�g(xk) �e(x1)
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Density Surface: f(x)
VAR Surface: V(x)

Construction of Exponential Twist (Convex Case) 

π = µ e−µ (x −β*
)

Along the direction x
β
 

= Effective Starting Distance for the 
    Exponential Twist                 

β* = |βT ⋅ u|

Center of Density Surface: f 

u = x
β
/|x

β
|

= Unit Vector Along the Direction Xβ  

∂ H

x
β
=Σ−1 ⋅ β

β
     

µ = |x
β
|
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∂ H

x
β
=Σ−1 ⋅ β

Density Surface: f(x)
VAR Surface: V(x)

β
     

Center of Density Surface: f 

= Effective Starting Distance for the 
    Exponential Twist                 

β* = |yT ⋅ u|

Construction of Exponential Twist (Concave Case) 

π = µ e−µ (x −β*
 )

u = x
β
/|x

β
|

= Unit Vector Along the Direction Xβ  

Along the direction x
β
 

y  =  Position  
Vector on f 

β* = |βT ⋅ u|
= Effective Starting Distance for the 
    Exponential Twist                 

µ = |x
β
|
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Twist for Multiple Local Minima

For �i with twist density ��i(x), i = 1;2; :::m,

form the following twist:

�(x) =
mX
i=1

�i��i(x)

where x 2 Rd, and �i is a weighting factor such

that
Pm
i=1 �i = 1.

Weight factor selected according to the rela-

tive importance of each local minima:

�i =
f(�i)Pm

k=1 f(�k)
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The Laplace Principle (One Dimension

Case: Similar for more General Cases:

Appendix C)

P (Bv) = e�
v2

2
1p
2�v

[1� 1

v2
+

3

v4
] + o(

1

v7
)

M2
g (Bv) = e�v

2 1p
2�2v

[1� 1

(2v)2
+

3

(2v)4
] + o(

1

v7
)

M2
e (Bv) = e�v

2 1

2�v2
[1� 2

v2
+
12

v4
] + o(

1

v7
)

where M2
g = the second moment under the

gaussian twist, and M2
e = the second moment

under the exponential twist.

Based on the Larege Deviation Theory, both

Gaussian Twist and Exponential Twist are Aymp-

totically EÆcient. (i.e., M2
g (Bv) � e�v

2

, and

M2
e (Bv) � e�v

2

for large v).
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The Exponential Twist is More EÆcient

The Variances are compued as:

M2
g � p2 =

e�v
2

p
2�v

[
1

2
� 1p

2�v
+ o(

1

v2
)]

M2
e � p2 =

5e�v
2

2�v6
[1 + o(

1

v8
)]

Many Leading Terms Cancel for M2
e � p2.

M2
g � p2

M2
e � p2

=

p
2�v5

5
[
1

2
� 1p

2�v
+ o(

1

v2
)]

When v = 2:326,
M2
g�p

2

M2
e�p

2
= 11.21.

As v !1,
M2
g�p

2

M2
e�p

2
� Cv5.

The Exponential Twist is more eÆcient by a

factor of v5. This is true even for multiple local

minima cases (See Next Graphs).
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Test Results

(1) 10 Short Calls, 5 Short Puts.

(2) 10 Long Calls, 5 Long Puts.

(3) 10 Long Calls, 5 Short Puts.

(4) 10 Short Calls, Puts Delta Hedged *.

(5) 10 DAO Short Calls, 5 Short Puts.

(6) 10 DAO Short Calls, Puts Delta Hedged *.

(7) 10 DAO Short Calls, CON Puts Delta Hedged

*.

(8) 10 DAO Short Calls, DAO Puts Delta Hedged

*.

(9) 10 DAO Short Calls, 10 Long DAI Calls .

(* involves more than one local minima)
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Table 2.1: Variance Ratio Test: GHS

Twist vs Gaussian Twist with

Optimization

Port. GHS Ratio Gaussian Ratio

(1) 3.20013E+01 3.31234E+01

(2) 3.41234E+01 2.83456E+01

(3) 3.31233E+01 3.12223E+01

(4)* 1.75335E+01 2.12234E+01

(5) 1.04843E+01 1.92334E+01

(6)* 9.18233E+00 1.38283E+01

(7)* 3.12344E-01 1.21314E+01

(8)* 7.34232E+00 1.34212E+01

(9) 3.23423E+01 3.81234E+01

(* involves more than one local minima)

Port. = Portfolio

GHS Ratio = Variance ratio by GHS Method

(Appendix B)

Gaussian Ratio = Variance ratio by Gaussian

Twist with Optimization.
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Table 2.2: Variance Ratio Test: Gaussian

Twist vs Exponential Twist

Port. Gaussian Ratio Exponential Ratio

(1) 3.31234E+01 1.29874E+02

(2) 2.83456E+01 1.31235E+02

(3) 3.12223E+01 4.35323E+02

(4)* 2.12234E+01 4.65234E+01

(5) 1.92334E+01 4.21433E+01

(6)* 1.38283E+01 4.87683E+01

(7)* 1.21314E+01 3.21314E+01

(8)* 1.34212E+01 3.94342E+01

(9) 3.81234E+01 1.12434E+03

(* involves more than one local minima)

Port. = Portfolio

Gaussian Ratio = Variance ratio by Gaussian

Twist with Optimization.

Exponential Ratio = Variance ratio by Expo-

nential Twist with Optimization.
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Method II

f(x) can be high dimensional.

V(x) may contain path dependent options.

Explicit optimization may be impractical.

Solution:

��(x) � f(x) � e���max(V (x);v); � > 0

(1) Sample �� using MetropolisM(RT)2 Markov

Chain Monte Carlo (MCMC).

(2) Choose � adaptively so that V � v for the

half of the samples (i.e., E�[sign(V � v)] =

0).

Robbins-Monro algorithm

�n+1 = �n+
1

n
� (sign(V � v))
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New Exponential Twist for MCMC

��(x) = C(�) � f(x) � e���max(V (x);v); � > 0

� The twist f(x) � e��V (x) is common.

� S � eX and V (x) = �S gives � � e�x
2=2+�ex,

unbounded.

� max(V (x); v)) avoids potentially unbounded

��(x).
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πθ, x≤ v

πθ, x>v

v=2.326

π
θ
 =C e−(x−v)

2
/2 , θ=v

π
θ
=C e−(x−v)

2
/2 −v(x−v) , θ=vLike a Shifted Gaussian for x ≤ v 

Drops like Exponential 

Twist for x > v

πθ(x) =C f e−max(V,v)

f=e−x
2
/2

V=−x
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Metropolis Hasting M(RT)2 Algorithm

(1) Markov Chain Monte Carlo (MCMC)

P(Xn+1 2 AjXn = x) =
Z
A
T(xjy)dy; A � Rd

(2) Rejection Algorithm

T (xjy) = a(xjy)q(yjx) +
Æx(y)(1�

Z
A
a(xjy)q(yjx)dy)

a(xjy) = 1 ^ q(xjy)�(y)
q(yjx)�(x)

a(xjy) = Acceptance Probability of y from x.

q(yjx) = Proposal Density of Sampling y given

x.
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Metropolis Hasting M(RT)2 Algorithm

Detail Balance

T(xjy) � �(x) = T(yjx) � �(y); 8x; y;2 Rd; x 6= y

StationarityZ
A
T(yjx)�(y)dy = �(x) 8x; y 2 A

Detail Balance ! Stationarity

R
A T(yjx)�(y)dy =

R
A T(xjy)�(x)dy

= �(x)
R
A T(xjy)dy = �(x)
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Metropolis Hasting M(RT)2 Algorithm

(1) Given Xn, sample Yn from some proposal

ditribution q(yjx = Xn)

(2) Sample � from uniform distribution on [0;1].

(3) Accept Yn with probability =
q(XnjYn)�(Yn)
q(YnjXn)�(Xn)

.

That is, if � <
q(XnjYn)�(Yn)
q(YnjXn)�(Xn)

, then accept

the it and let Xn+1 = Yn.

(4) If step (3) is not satis�ed, then reject it

and let Xn+1 = Xn.

(5) Repeat the above steps (1)-(4) for the rest

of sampling.
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Metropolis-within-Gibbs Algorithm

This is a multi-dimensional version of Metropo-

lis Hasting M(RT)2 Algorithm. One dimen-

sional Metropolis algorithm is applied one co-

ordinate at a time.

(X1
1 ; X

2
1 ; :::;X

d
1) ! (X1

2 ; X
2
1 ; :::; X

d
1)

(X1
2 ; X

2
2 ; :::;X

d
1) ! :::::

(X1
2 ; X

2
2 ; :::;X

d
2) ! (X1

3 ; X
2
2 ; :::; X

d
2)

:::::: ! :::::

(X1
n ; X

2
n; :::; X

d
n�1) ! (X1

n; X
2
n; :::; X

d
n)

(1) Sequential Scan Metropolis-within-Gibbs

Algorithm

Each Coordinate is sampled sequentially in a

�xed order.

(2) Random Scan Metropolis-within-Gibbs

Algorithm

Each Coordinate is sampled in random order.
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New Algorithm for VAR Probability

Computation

Perform Metropolis-within-Gibbs Algorithm

(1) Accept with Probability =
q(Xk

njY
k
n )�(Y

k
n )

q(Y k
n jX

k
n)�(X

k
n)

That is if � <
q(Xk

njY
k
n )�(Y

k
n )

q(Y k
n jX

k
n)�(X

k
n)
, then let Xn+1 =

(X1
n ; :::Y

k
n ; :::X

d
n).

(2) If step (1) is not satid�ed, then reject it

and let Xn+1 = (X1
n ; :::X

k
n; :::X

d
n).

(3) Update �n+1 by �n+1 = �n+
1
n �sign(V �v).

Make sure to record all the values of f�ng,
and fVng, and Go to step (1)
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Control Normalization Constant by
Sampling from Conditional Probability

(1: More Accurate Near the Center) N
5 runs

of the Regular Monte Carlo to compute p1 =
P(V < v1). (v1 > v is chosen to approximately
corresponds to about p1 = 0:1 or even p1 = 0:5
heuristically).

(2: More Accurate Near the Tail) 4N
5 runs

of the Metropolis to compute the conditional
probability p2 = P (V < vjV < v1).
The Final VAR Probability = p̂1p̂2.
E�ective Error = "1"2+ "1p̂2+ "2p̂1 where "1
= the error for the �st run, "2 = the error for
the second run.

(Bayes Rule)

p̂1p̂2 � P(V < v1)P(V < vjV < v1)

= P(V < v1)
P(fV < vg \ fV < v1g)

P(V < v1)

= P(V < v1)
P(V < v)

P(V < v1)
= P(V < v)
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Theoretical Justi�cation

(1: Lyapunov Condition) : Existence of the

Lyapunov function W(�) = e(���
�)2�m

(2: A-Stability) : � is contained in a compact

set K � R+.

(3: Geometric Ergodicity) : For a �xed �,

the chain is Geometric Ergodic (Rosenthal(2001))

(4: Continuity of T� with respect to �)

(5: Slowly Decreasing Condition) : Auto-

matically satis�ed by
P 1

n =1,
P 1

n2
<1

By Delyon (2000), �n ! �� such that E��(sign(V�
v) = 0 almost surely.
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Application

VAR for Path Depensent Options : Each

path corresponding to di�erent times are con-

sidered as an independent variable. Brownian

Motion: Bt�s is independent of Bs; t > s.

�x = f�x1; �x2; :::; �xdg
= fx̂1

p
t1; x̂2

p
t2 � t1; :::x̂d

q
td � td�1g

S(ti) = S(0)e(r�
�2
i
2
)ti
Qi
k=1 e

�i�xk.

S(ti) = S(0)e(r�
�2
i
2
)ti

i�1Y
k=1

e�i�xk � e�i�xi = S(ti�1)e
�i�xi

recursively.

Problem Formulation

E.g. Asian Call

E[e�rT (
dX

i=1

S(ti)

d
�K)+]
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Pricing Basket Option on a Portfolio

Application for Pricing: Far-out-of-the money

puts or calls on baskets (For Insuarance pur-

pose to hedge against extreme risk).

Basket Call Price:PN
i=1(v � V )+e�max(V;v)PN

i=1 e
�max(V;v)

under the new Girsanov measure �� = fe��max(V;v).

Intuition:

�� = C � fe��max(V;v) = Ĉ � fe��max(V�v;0)

The limiting distribution tends to be centered

around the set V = v.

Approach: To treat V as a random number,

not its underlying risk factors. The risk factors

are the part of the system, but they are all put

in the black box approach as this algorithm

implicitly �nd the optimal point based on the

behavior of the random number V .
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Experiments

[1] 10 long Asian call with strike = 100, the

time grid size equal to 10 equal intervals with

�nal maturity time = 0.05. This results in 10

e�ective dimensions.

[2] 10 short Asian put with strike = 100. The

e�ective dimension is the same as the above.

[3] 10 long lookback call positions with e�ec-

tive dimension of 10. The gridding was done

the same way as the Asian case above.

[4] 10 long lookback call positions with e�ec-

tive dimension of 30. The gridding was done

the same way as the Asian case above.

[5] 10 long Americal call option with e�ective

dimension of 5. The exercise times reported

by Binomial tree are (0.03, 0.035, 0.04, 0.045,

0.05).

[6] 10 long American call option with e�ective

dimension of 17. The gridding for the bino-

mial tree was increased so that it resulted in
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17 instances of exercise times.

[7] Basket option with American option in (6)

plus 10 short European calls in 2 dimensions, 5

long European puts in the same dimension as

the call, 5 digital call in another 2 dimensions

, 6 digital puts in the same dimension as the

previous digital call. The blockwide correlation

is all set to 0.5. This results in the e�ective

dimension of 17 + 2 + 2 = 21.

[8] Basket Option with American Option in

(6) plus separate butter
y positions in 6 di-

mensions block correlated with correlation =

0.5: one long call with strike = 90, one long

call with strike = 110, and 2 short calls with

strike =100.



[MCMC Metropolis-within-Gibbs

Algorithm Variance Ratio Test Results]

Probability � 1.0E-002;

Portfolio Variance Ratio Autocorrelation

1 3.427232E+000 1.544545E+001

2 3.012343E+000 1.685677E+001

3 3.252323E+000 1.532123E+001

4 2.042234E+000 3.114677E+001

5 4.566678E+000 8.123445E+000

6 3.023355E+000 1.912424E+001

7 2.484545E+000 2.342456E+001

8* 2.364311E+000 2.645677E+001

(* is a portfolio with multiple local minima)
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Summary

(I.I.D. Solution) Importance Sampling based

on Non-Linear Optimization with Exponential

Twist Density �.

Conclusion: Works well for almost all portfolios

with explicitly known density as long as all local

minima are covered by this twist.

(MCMC Solution) Importance Sampling based

on Metropolis MCMC with a clever choice of ��
where � is chosen adaptively using the Robbins-

Monro algorithm.

Conclusion: Works well for our portfolios.

Issues: Sampling could be trapped in one of

the local minima potentially missing many other

local minima. The reduction of the autocorre-

lation time decreases the variance further.
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