Exponential Importance Twist for
Computing Value-at-Risk

FIRST DRAFT

Kazuhiro Iwasawa
The RBS Greenwich Capital Markets, Inc.
Jonathan Goodman

New York University, Department of Mathematics

Abstract

This paper proposes effective Monte Carlo simulation method for comput-
ing Value-at-Risk (VAR) for various portfolios containing non-linear derivatives
such as options. The new technique is motivated by the Large Deviation The-
ory for rare event simulation which is applied to perform importance sampling
for variance reduction. In this paper, non-linear optimization will be used as
a guide to find a clever choice of exponential twisting density for an effective
importance sampling.
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1 Introduction

1.1 Value-at-Risk (VAR)

Value-at-Risk (VAR) has become a major concept in the analysis of market
risk in finance ([11],[37]). Typically, the value of a portfolio in the future is a
random variable. Let us define the future portfolio value as V', and the initial
portfolio value today as v,. Then for a given confidence interval p, VAR is
defined as a real number ! v, — v, satisfying:

PV <uv,)=p (1)

1y — v, is the P&L (profit or loss from today to sometime in the future)



It is basically the maximum possible loss a firm (or desk, etc) will lose in a
given time horizon with certain confidence p. The popularity of VAR lies in
the simplicity of expressing firm’s risk exposure in one number. Typically the
1-day 95 % VAR (p = 0.05) and the 10-days 99 % VAR (p = 0.01) are used in
the banking industry. Recently BIS (Bank for International Settlements) have
made regulatory requirement to use the latter for capital allocation purposes.

Computing VAR involves estimating the very small probability p for the tail
event of the distribution of V in the loss region. There are various methods for
computing VAR ([11]) ranging from analytic methods to simulation methods.
Almost all analytic methods ([37], [6]) lose accuracy in the tail (or ’extreme
quantile’, p < 0.05) or if the portfolio function V is distributed in highly non-
gaussian way. The alternative is to use simulation methods for the extreme
quantile cases using Monte Carlo.

Conventional Monte Carlo loses accuracy for a small p. We seek Monte
Carlo methods that give better accuracy for small p. This is related to the
general area of Large Deviation Theory and rare event simulation. Rare event
simulations are often improved by using importance sampling (defined in the
next section). There are several importance sampling methods using analytic
formulae as guidance ([20], [22], [23], [24], [26]). Though they work for some
extreme quantile cases, they are known to fail if the portfolio V' is distributed
in highly non-gaussian way, or there is more than one way to reach the VAR
region (more than one local minimum).

We investigate importance sampling technique with less dependency on an-
alytic methods. Still motivated by the Large Deviation Theory, we will propose
new alternative Monte Carlo method for computing VAR. We shall give brief
descriptions of our method.

1.2 New Importance Sampling Monte Carlo Strategy

We propose a new importance exponential twist which uses a simple reweight-
ing intended to produce sampling near the most likely scenario in the VAR re-
gion. This strategy is appropriate for portfolios that are not path dependent,
that is, for V = V(z) with € R? with a simple explicit density f(z). Portfo-
lios containing underliers and European style options or American options that
do not get exercised in the VAR period have this property. This method uses
non-linear optimization to identity 5 € B, such that f(8) = max f(z) where

B, = {z : V(z) < v}. B is called the ’local minimum’, and B, is called the
"VAR region’. We then propose a new exponential twisted density along a di-
rection perpendicular to the VAR surface V(z) = v near the local minimum.
This density is quite simple and can be sampled very easily. For some port-
folios, there can be many such 5. We call these the 'multiple local minima’.
For these cases, the twisted density will be a convex combination of the above
twist for each 3. The details of this technique are explained in section 2. In the
next section, the basic Monte Carlo Methods for computing VAR, and general



importance sampling technique will be explained. Those who are familiar with
these concepts can skip this section.

1.3 Basic Monte Carlo Method for VAR and General Im-
portance Sampling Technique

In general, the usual task is to compute v for given p. Typical Monte Carlo
requires generating ! N instances of random numbers 2 V', and sort these values
of V in ascending order. The N - p-th value is the estimate for v,. The error
analysis for this problem can be computed by using order statistics.

A simpler but also challenging problem is to estimate the distribution func-
tion F(v) = P(V < ) for v in the tail so that F' is small. This also involves
rare event simulation. Recovering v from F' is straightforward ([30], section 1).
Therefore we shall focus on estimating F'(v) = p for a given v.

Let us assume that X has a probability density f = f(z),z € R?. Let us
further define the set B, = {z : V = V(z) < v}. Then p can be expressed as:

p=PV <o) = [ In @) ds @)
R4

where I is a characteristic function. In Vanilla Monte Carlo simulation, its

estimator is given by:

LN
p= N Z Ip,(X;) (3)

If the sampling is done i.i.d. (independently identically distributed;), then
the law of large numbers guarantees p — p and the Central Limit Theorem
(CLT) guarantees that its error goes down by &~ Where o is a standard de-

viation given by: o = /p(1 —p). Typically the statistical error is given by

e = % which is an error bound with 95 % confidence. The relative error is

given by %. For rare event simulation, p is small. Therefore, the relative error is

2VPU"P) ., _ 2 This means that as p becomes smaller,
\/Np v/ Np

the relative error increases. So, we have to increase N to keep the relative error
small when p is very small. This could be computationally very expensive for
many portfolios. The alternative is to reduce its variance. Variance reduction
techniques such as importance sampling technique result in small variance.
Importance sampling technique focuses on finding right density for the inte-
grand so that more samples are done near the region of interest. This technique
calls for introducing a new twisted density = where f is absolutely continuous

approximated as % =

ITypically N = 10,000 to a million.
2The portfolio value V' must be computed. See ([30], section 1) for the detail.



with respect to 7 so that the probability can be expressed as:

p=P{V <v)
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The term fr Ei; is called the likelihood ratio. This process is also called the
change of measure. The estimator for p under 7 is given as:

1 al (X
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~

(5)
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where N is the number of iterations. When 7 is picked so that the expression
Ip, (z) 7’: g;; is nearly constant under the probability density 7, then the variance
will be reduced significantly if not eliminated. This can be achieved when 7 is
similar to the function Ip, (z)f(x), or if m samples more in B,,. Various authors
proposed methods for creating w. Glasserman, Heidelberger, and Shahabuddin
([19],[20],[24],[25], henceforth GHS) computed new twisted density with new
mean and covariance using analytic as a guide. These methods do not work
well if the analytic approximation is not accurate, or if there is more than one
local minimum. Glass([18]) proposed non-linear optimization to identify local
minima, and construct a Gaussian twisted density based on these local minima.
This method works for the cases when the GHS method fails. In the next section,
we will propose a new importance twist 7 by extending Glass’s approach.

2 New Importance Sampling Technique

2.1 Introduction

In this section, we will propose new importance sampling strategies for com-
puting VAR. The natural choice for a good importance sampling twisted density
7 would be to create one from the original density f with shifted mean(s). If
the new mean is chosen so that it samples more near the region of interest, then
it would be a successful importance twisted density. The major question is how
one can compute or estimate new mean and covariance.

Most importance sampling strategies applied to VAR are based on the main
premise of the Large Deviation Theories (Dembo [8]). Twisted density with new
mean should sample most data around the new mean so that V' < v most of the
time. Our objective is to find the point(s) so that the density f is maximized on
the VAR region V' < v. To find the most likely way to get V' < v, we (following
Glass [18]) perform a nonlinear optimization:

max f(z) (6)

z€B,



where !  is a d-dimensional normal process in R?, and B, = {z € R? : V(x) <
v}. B such that f(8) = max f(z) is called the ’local minimum’, or the '"MRP’
x v

("Minimum Rate Point’ as called by Bucklew [4]). For some portfolios, there are
multiple local minima or MRPs. Glass found, and we also confirm, that multiple
local minima do occur and it is important to use them all for the importance
sampling. We will then introduce a new exponential twisted density in the di-
rection perpendicular to the VAR surface V = v at each local minimum. We
will show the effectiveness of this method both experimentally and analytically.

2.2 Non-Linear Optimization for Maximizing Density f(z)

Let us describe our optimization technique in more detail. We hope to
maximize the density f(x) in a set B, where the density f is given by:

_ 1 7%IT-E;1-I
flz) = (27r)d/2|2x|1/26 (7)

where ¥, is a covariance matrix. This can be done by an optimization technique
called the Penalty Method. The penalty method is an iterative routine where a
penalty factor a is introduced to perform a global unconstrained minimization
as follows:

min ¥(z,a) (8)
where U is given by:
U(z,a) = —f(z) +a (V(z) —v)* (9)

where a > 0 is a penalty constant. At each iterative step, the penalty factor
a is increased until the the solution to the problem (6) is found. We shall not
describe the actual optimization algorithm here since the theories and practices
are explained in many optimization text books ([1],[36],[44]). We have used
"fminsearch’ function from Matlab (v12.1) to perform global optimization for
the above penalty method.

Some portfolio have multiple local minima. In order to counter this prob-
lem, one can make systematic search by dividing the space R? into several blocks
(for example, each quadrant). Then a set A of candidates for the initial point
is picked from each of these blocks. This can be done heuristically, and the
above optimization can be performed for each of the element of the set A. The
optimization is computationally very inexpensive, and thus running this process
several times is not an issue compared with the actual Monte Carlo runs. Fur-
thermore, once could pick an initial guess by resorting to some analytic method.

1Glass [18] performed maximization on f(S) which is a correlated lognormal density. In-
stead, we will perform optimization on f(z) as a correlated normal density in RY.



As a comparison, we have used the GHS method ([25]) to pick a starting initial
point. This method picks a point in R? near the region V = v if V does not
have multiple local minima.

2.3 Importance Twisted Density for Computing VAR Prob-
ability

Suppose we have m local minima, say 8 = {51, 82, ..., 34}. Then for each of
these local minima, we construct the following Gaussian twist;:

m

- Qi —3(@=8)T 27 (2—5:)
m(x) = Z (27T)d/2|2m|1/26 2 (10)

where z € R%, and «; is a weighting factor such that > ;-, a; = 1. Each
weighting a; should be selected according to the relative importance of each
local minima. Therefore, we have used the following weighting using the original
density f(x) as a guide:

o = f(Bi) (11)

Z;@n:1 f (ﬂk)
The intuitive idea of this weighting is to sample more where the density is large.
One could also assign the equal weight % to each of a;. We confirmed that
this Gaussian twist works for all portfolios (section 3.2) if all important local
minima are sampled using the density (10). This is guaranteed by the Large
Deviation Theory as well. In the next section, we will propose a better twisted
density function that will boost the performance even further.

2.4 Exponential Density as the New Importance Twist

Let us assume that all local minima are identified 8; ,7 = 1,2, ..., m via non-
linear optimization as described in the previous section. Then we propose an
exponential twisted density in the direction perpendicular to the VAR surface
V = v at each local minimum f3;, and Gaussian densities in other directions.
Let us call this direction xg, which is given by X! - 3; (The derivation will
be given shortly). Let us define the unit vector for zz, as ui, and call the
coordinate as z1. We can construct new orthogonal coordinates starting with
x1 by performing Gram-Schmidt orthogonalization process. Let us define the
corresponding unit vector for each zj =03, . 4 as ug. At each local minimum
B;, the VAR surface V = v, and the density surface f = C' (constant) is tangent
to each other. If the VAR region B, is convex, then we can place the entire VAR
region B, inside a half space H so that its boundary OH called "Hyperplane’



is tangent to both B,, and the density surface f at (8; where H is defined as
H ={zx € R* : 25, - (x — 3;) > 0}. Then an exponential density can be
constructed starting from this hyperplane OH (that is to start from |37 - u|
which is the projected length of §; along the direction of u;, See Figure 1). If
B, is concave and some part of B, comes closer to f bypassing the hyperplane
H, then we need to construct an exponential density starting from the boundary
of f (which is the ellipse 27 -3 127 = BI'. ;) to make sure that all VAR region
is covered (See Figure 2). Thus, motivated by the Large Deviation Theory and
the Laplace method (Appendix A), we propose the following density along x1:

(o) = e =50) (12)
, x1 > B, and B} is given by:

18] = |8 -wy| if B, € H (i.e.,B, is convex)
g lyT - ui| otherwise (i.e.,B, is concave).

where !y = |zg,

(13)
where y is the point on the ellipse: y? - X! -yT = gI'. g;. Rather than
finding y, once can compute |y? - ui| directly by |y’ - u;| = b. where b =

\/ﬂlT Bi —xT -7 2T, and Z = (0,2, 23,...,24). When b becomes imagi-
nary, then set b = 0. For all other d — 1 directions z», z3, ..., z4, we propose the
following Gaussian densitiy:

7l'i Tk) =

g( ) v 271')\1@
where Apripn is the smallest eigenvalue of the correlation matrix ¥,. The idea
is that in the most important direction u;, we propose the exponential density,
and use the Gaussian densities for all other orthogonal directions. Thus, the
final target density is the expressed as:

e hin (14)

d
() = [] =i (er) wia) (15)
k=2

If B, is convex, then the order of sampling z; does not matter. If B, is con-
cave, then HZ:Q 7. (1) must be sampled first in order to find out the starting
boundary 3} for w¢(x1). Finding out the curvature (whether B, is concave or
convex at () is quite simple. Take any small arbitrary € > 0, and any arbitrary
unit direction u; # wi. If V(B; + euj) > v, then it is convex. Otherwise, it is
concave. This statement is locally true since (3; is assumed to be a local min-
imum. One can perform the same construction for all other local minima f;
to get the following effective final target density for the multiple local minima
case:

m

w@) =3 as [] milon) i) (16)

i=1 k=2

1]| is the Euclidean norm in R¢



Construction of Exponential Twist (Convex Case)
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Figure 1: When the VAR region B, is convex, and is contained in the half space
H. Then the exponential twist is created along the direction perpendicular to

the VAR surface (or Density surface f) at 8. In this case, §* is a fixed number
computed by |37 - u| where u is a unit vector along the perpendicular direction

zg. The Gaussian twists are created for all other orthogonal directions.



Construction of Exponential Twist (Concave Case)
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Center of Density Surface: f

u=x/x
p | Bl
= Unit Vector Along the Direction >%

Density Surface: f(x)
VAR Surface: V(x)

Figure 2: When the VAR region B, is concave, then the exponential twist is
still created along the direction perpendicular to the VAR surface (or Density
surface f) at 8. However this time, 8* must be changed at every point y on
the density surface f. 8* is now given by |y - u|. Likewise the convex case, the
Gaussian twists are created for all other orthogonal directions.



Note that z for each local minima 3; has its own coordinate system. Therefore,

in order to construct the likelihood function %, we compute the effective

vector in the original coordinate system as:

d
x = Zuimi (17)
i=1

and plug this into f(z) to compute % As long as we cover all local minima,

we do not have to worry about concave VAR regions (if any) crossing the density
surface f = C other than touching §;. If this happens then any points where
V' surface crosses f = C will be more optimal than 3; (implying the existence
of much smaller f = C' curve tangential to these points) contradicting the fact
that g; is the local minimum. Or these points will be one of other local minima
being found via optimization. Therefore the weighted density (16) should work
well.

We shall briefly discuss how we derived the expression for zg, as ;! - ;.
The gradient VV'(8;) gives the perpendicular direction at £;. Since both the
density surface f = C and the VAR surface V = v is tangent to each other at
each local minima §;, the gradient Vf(8;) can be used as well. So computing

V£ (B:) gives:

VIB) = FBIV(—gaT 5 )
= —f(B)=;" - Bs

Thus the direction is along the constant multiple of the vector Vf(8;). The
alternative derivation is based on the Large Deviation Theory. As will be shown
later, at each local minima (MRP) 3;, x5, must satisfy VA(S3;) = x5, where A
is a logmoment generating function given by A(f3;) = log E[e’*]. Since E[e%?]
is computed as:

B = [ e S
R

L 2m)i2|z, 172
= e%BiT'Z;l'Bi
A(B;) = log E[efi®] = 18T - =7t . B;. Therefore, zg, = VA(B;) = 7' - B;.
It turn out experimentally, that this factor is confirmed to be an optimal one.
Too big or too small zg, will result in sampling too much to too little in the
far region of B,. Note that when f is an uncorrelated Gaussian density, then
x5, = ¥, - B; = B;. This makes sense since vector from the origin to any points
on the sphere is perpendicular to the sphere itself.

Next, we shall explain the effectiveness of our exponential twist over the
Gaussian twist. The Exponential twisting has several advantages. The first
advantage is that the tail of the distribution for f behaves like an exponential
distribution. Let us take a simple one dimensional example where our objective

is to estimate Pr(X > v) where f(z) = \/%e_”ﬂﬂ for large v = 2.326 which

10



corresponds to p = 1. The Gaussian twist will be given by 7 = \/%—”e*(“”*vfm,

and our exponential twist is 7 = ve~(*=%)?_ The graph of these densities is
shown in the figure 3. The figure shows that f falls off much faster than the
shifted Gaussian when z goes beyond v. Thus, most of the Gaussian twist sam-
ples too far from v to contribute much to the over all p. On the other hand, the
exponential distribution approximate the original f very well.

Let us analyze more quantitatively. By following the same reasoning (but
much simpler) as done in the Appendix A, we can compute p asymptotically as

1}2 .
p=e T \/21_7”) [1 - % + 2]+ o(3). The second moment M? for the Gaussian

'U2

twist can be computed similarly as M? = e~ \/%20 - (211))2 + (23)4] + o(Z).

Likewise, the second moment M? for the exponential twist is given by M2 =

—v* s [1— % +22]+0(). So the variance for the Gaussian twist is computed
2
2_ .2 _ eV gl 1 1 : : :
as My —p* = N (35— NoLT +o(2v—2)], and the variance for the exponential twist
is computed as M? — p? = 528;:6 1+ o(v%)] We can notice that the variance

ratio for the exponential twist drops significantly because of the cancellation

of many leading terms of v resulting with v% being the largest leading term.
On the other hand, the leading term for the Gaussian twist is % Comput-

ing the variance ratio of Gaussian twist over the exponential twist is given by

M2 _p2?
Mié,; = 2;”’5 [1- 21”0 + 0(-%)]. Thus for our model problem, v = 2.326, so
M;—p2

= ™ 11.21 which is consistent with most of our experimental results (Ap-
pendix C). The variance ratios for the Gaussian twist is somewhere between 10
and 50 whereas the variance ratios for the exponential twist is generally around
3 digits (100 to 500). Asymptotically, the exponential twist outperform the
M- VEm®
M2 —p? 5
Therefore, the exponential twist is the best candidate for the rare event simu-
lation.

The second advantage of the exponential density is that it is at least efficient
by almost a factor of 2. This is because of the fact that the exponential density
samples one side of the VAR boundary V = v, i.e., V. < v most of the time.
On the other hand, the Gaussian twist samples both regions V < v and V > v
although it is peaked at V' = v. This conceptually results in half of the sam-
ples being wasted. Furthermore, the exponential twist avoids sampling near the
origin which typically gives huge likelihood ratios resulting in larger variance.
We shall show an example where the importance sampling with the exponential
twist outperforms the Gaussian twist for multiple local minima case. Take for
example a portfolio V' consists of butterflies in 2 dimension (one long call struck
at 90, one long call struck at 110, and 2 short calls struck at 100). It is well
known that this portfolio have two ways to lose money in each direction. Let
us assume that a trader hold butterfly trades in two different underliers each
uncorrelated. This will results in four local minima. Let us take a correlated
case (say, correlation = 0.8). Then the optimization finds (with p = 0.01) two
local minima as shown in the figure 4. One can see that the underlying density

Gaussian counterpart by order of v® as v becomes large since

11



Twisted Density Comparizon Analysis

Shifted Gayssian Twist

0.25

Y Density Value

0.15

Original Gaussian Density

X Underlying Value

Figure 3: Density Plot: The Original Density \/%76_’”2/ 2, the Gaussian twisted
density with shifted mean (scaled) \/LQ—ﬁe’(“”’”)Z/2 , and the exponential density

with shifted mean (also scaled) ve~(*=%)? near the 99th quantile (v=2.326)
are plotted. Note that the exponential twist seems to better approximate the
behavior of the original function than the Gaussian counterpart. The Gaussian
twist samples too far outside the true region of interest. Therefore, it results in
a loss of computational time.
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2 Dim Scatter Graph for Both VAR Regions @ (p=0.01): Concave Off
8 T T T T T T

Exponential Variance Ratio =537.927933 ‘ ‘ ‘
6 Gaussian Variance Ratio = 34.240548 - : : S
(Square) => Actual VAR Region,
(Diamond) => Points Sampled
by Exponential Twist

4| - (Circle) => Points Sampled-by
Gaussian Twist :
Portfolio = 2 Dim Butterfly

E Correlation =0.8
$ 2t
c
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c
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0o Hyperplanes
_4 - 5
o 00
_6 | | | | 1 |
-8 -6 -4 -2 0 2 4

X Gaussian Underlier

Figure 4: Scatter plot for the simulated V' with correlation = 0.8 in 2 dimension
(one long call struck at 90, one long call struck at 110, and 2 short calls struck at
100). Here, we have butterfly position in each dimension. For this case, there are
2 local minima as can be seen from the graph. Corresponding local minima are
B1 = [2.33203E+00,2.33196 E+-00], and 2 = [—2.42727E+00, —2.42727E+-00].
Since the VAR region is convex, one construct an exponential twist starting
from the hyperplane OH. Tt is clear from the graph, more than the half of
the Gaussian twist samples fall out side the VAR region. The Gaussian twist
gives the variance ratio of about 34. On the other hand, the effectiveness of the
exponential twist can be seen both visually, and numerically. This twist samples
heavily in the actual VAR region, and the variance ratio for this portfolio is over
530. Furthermore, the exponential twist avoids sampling near the origin which
typically gives huge likelihood ratios resulting in larger variance.
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looks like an ellipse (no longer a circle), and aligned along the line = y. This
makes sense since high correlation has the effect of collapsing VAR region to-
gether. In this example, B, is convex, so the exponential twist is formed from
the hyperplane OH. As can be seen from the figure, two exponential twists are
used to construct the effective twist 7. It is visually clear from the figures 4 that
the Gaussian twist wastes too many samples (over half) although the variance
ratio is still good (about 30). The exponential twist, on the other hand, sam-
ples almost within the actual VAR region, and the variance ratio is about 530.
Therefore, this example has shown that the exponential twist outperforms the
Gaussian twist even for the multiple local minima case. Furthermore, this result
confirms that it is important to use all local minima to create the exponential
twist.

2.5 Large Deviation Analysis

The tail behavior of the distribution can be best described by the Large De-
viation Theory (Henceforth LDT). From the LDT context, the VAR probability
for the rare event case can be expressed as :

=P, :P(%ZV} <) = /R In, (2) o (2)dz (18)

For the importance sampling, we have the following representation for the sec-

ond moment: M2(m,) = [p.lIB, (a:)ffn—gz))]%rn(m)dm By applying the Jensens

inequality, we have:

()

So the variance = M?2(f,) — P2 can be minimized by letting I, () f:(m) =P,

7n(z)dz]? = P2 (19)

Mim) 2 [ s,

For each # € R?, let us define the following rate function A, (8) = + log(E[e"?X»])

where the expectation is taken under the density f,,. The LDT calls for defining
asymptotic log-moment generating function as : A(8) = lim A,(8). In order
n—oo

to avoid technical details, let us assume that the above limit exist which is the

case when f is correlated Gaussian density (Bucklew [4]). Let us define the

following Large Deviation rate function called the Legendre-Frenchel transform

of A(B) as: A*(z) = sup (B -z — A(B)). and the essential domain of A(x) as
BER?

the set D = {8 € R? : A(3) < oo}. Furthermore, let us define the Cramer

transform of a Borel set B, as: A*(B,) = xienjg A*(x). Since A(B) is strictly

convex and differentiable (a logmoment function under the Gaussian density)
on all of R, the LDT guarantees the followings ([8], [4]): (1) D is a convex set
and non-empty, (2) A*(y) is strictly convex on the interior of D (denoted D?),
and lower semicontinuous (3) For each 3 € D°, there exists an unique x5 € R?

14



such that VA(zg) = 3, and A*(8) = x5 - 8 — A(xzp). Let us assume that the
closure of B, (denoted BS) equals to the interior of B, and BSND° # (). Then
the LDT further guarantees the existence of the following limit:

.1 «
Jim = log(Py) = —A%(By) (20)
Bucklew ([4]) defined that a sequence =, of simulation distribution is asymp-
totically efficient if

.1 N
Jim —~log(M (7)) = —24%(By) (21)
If ,, is asymptotically efficient, then P,, ~ e~ "2 (Be) "and M2 (m,,) ~ e 2"\ (Bv),
Therefore P? ~ M2(r,), and the variance will be effectively cancelled to zero.
On the other hand, if 7, is not asymptotically efficient, then the relative error

grows exponentially since 7‘W ~ Const - e (B+) _ 50, Thus our ob-
jective is to find a twist which isnasymptotically efficient.

According to Bucklew ([4]), £ is called a minimum rate point ( or "MRP’)
of the set B, if 8 € dB,, and A*(f8) = A*(B,) = yi€nl£ A*(y). Furthermore,

B is defined as a dominant point of the set B, if 8 is an unique point such
that: (1) 8 € 0B,, (2) there exists a unique zg such that VA*(z3) = 3, and
(3) By CH(f) = {x : 2z - (x — ) > 0} where H is called a half space, and
OH is called the "hyperplane’ as introduced in the previous section when we
set up exponential twist off this 9H. From the convex function theory, the
hyperplane 0H () = {z : 3 - (x — ) = 0} is tangent to the rate function
level set {z : A*(z) = A*(B)} at the point 3, and VA*(z3) = 3. Thusif S is a
dominant point it is a unique minimum rate point. Therefore, if B, is convex,
and B, N D° # ), then set B, is covered by the half space H and the dominant
point 3 exists. For this dominant point (3, the second moment can be bounded
as:

Mim) < [ense LD pr 4p = A2m,) (22)
T (2)

This is so since Ig, < 2n zg- (xz — ) for the B, side of the hyperplane H. Since

An(B) = Llog(E[e"?Xn]), and [em®s°? f,(z)dx = E[e"®sXn] = enAn(#5) | the

~n
above second moment can be expressed as:

I

()

= ([ e g @l
[enAn(B)efn 13-6]2 =[e" (An(zﬁ)*mﬁ'B)P (23)

Thus the minimun is obtained by letting: e” Iﬁ'(z’ﬂ)[f"—(m)] = e (An(zs)—25°5)

()

So the optimal twist is obtained by: 7, (z) = fn(x)e” (#82=Ax(25))  Therefore
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the general twisting is hinted as: 7(z) = f(x)e®s*~A=s), For the multivariate
1

d
Gaussian, E(e®'") = [o, W6_5 D T eravdy = ¥ Thus, the twist-
ing becomes: 7(z) = f(a:)eﬂ'“”*%“”;'zﬁ. which amounts to shifting the original
density by the dominant point 3 since zg = ¥_; - 5.
Next, even if there are multiple local minima, the asymptotical efficiency
can still be achieved if all local minima are taken into consideration ([4]). Let
us assume A*(B,) = Iignff; A*(xz) > 0, and consider a series of distribution of

the form: 7% = f(z) Y10, aze™ (#5:-2=An(25:)) which is a convex combination
of twisted densities covering all minimum rate points where Y «; = 1, and
B = (B1, B2, -, fm) € D°. We shall show that if B, (the closure) C U™, H(B;),
and A*(xzg) > A*(B,) for each i = 1,2,...,m, then 7}, is asymptotically efficient.
(Sufficient Condition). Let us compute M2(m,,) as:

2(r _ fu() 20 (o)da - fn() 20 (o)da
i) = [ @<y [ @

i=1

Bi) i=1

m
i:zl H(B:)
m

= Yot [ e @
P H(B:)

_ Z a; e 2" @i BimAn(zs,)) / e n e 0=, (1)da
P H(B:)

S Z ai—2672 n (Eﬁi'ﬁi*/\n (Iﬁi)) (24)
i=1

since [ e (@8 @ =An(@5:))]72 < [aen (@52~ An(@5:)]72 and 5, - (- B;) >
0 for 8; € H(B;). Since Vi, 1i_>m (25, -Bi—An(zp;)) = (zp,-Bi—A(x5;)) = A" (5:),

1

we have: lim sup —log(M?2(m,)) < —2 1rréin A*(B;) = —2A*(B,). This is
n—oo N i=1,2,...,m

enough to prove the sufficient condition since the LDT guarantees that

1
lim inf —log(M?2(m,)) > —2A*(B,).
n—oo N
Let us assume that all MRPs of _Bv are in D°. Then we shall show that
m is asymptotically efficient only if # contains all minimum rate points of B,
(Necessay Condition) Take & € BSN D° |, B.(§) = (x : ||z — &|| < €). Since
¢ € BN D°, we can find € : B-(§) C BN D°. Define a twist centered around
for € as : m§(x) = fn(zx)e™ (#a-2=A@s)  Then

My (mn) = /IBv [m] mp(z)dr = . (@)

fo(z)dz =
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m

/ [Z ai[en (zp, -zfAn(zBi))]]flefn (ve-z—Ap (Is)ﬂ'i(l‘)dl‘
BE(&)

i=1

Y%

m
= e (@eE—An(ze)) / [Z ai[en ($6i-zfl\n(6i))]]*1efn zs'(mfﬁ)ﬂ-g(w)dw
BE(&)

i=1
For all z € B.(£), we have z¢-(x—§) < g||z¢]|. Also, zg,-x = xg, - (x—§)+xp,-§ <
ellzp;|| + z; - € Therefore, we have:

m
M3(m,) > e (we-ﬁf/\n(we))[z afen Clleailltas; ¢=An(@a; ) =L en sllzell 26 (B_(¢))
i=1

7& (B (£)) is a probability of B.(¢) (whose center is ¢) under the shifted twisted
density 7% which is also centered at &. Thus, 75 (B:(£)) — 1, and we have:

lim inf S log(M2(m,) > —[ze- € — An(ze)] — ellze]

n—oo n

m
~lim sup llog[z qife Ellas.I+2s, €=M (@5)]=1]

n—o0 i=1

= —A(©) —cllwel - _max ez,

+ g, §— An(mﬁz)
Letting € — 0, we get:

N | 2 *

lim inf —log(My(mn)) = —A™(§) — _max +as &= An(zs,)
This is true for any ¢ € BS N D°. We assumed that B, = BS. Also we used
B,ND?# (. And all the minimum rate points are in D°. Thus we can obtain
the minimum rate point as a limit of points £ € B N D°. Since A* is lower-
semicontinuous. The above inequality folds if £ is one of the minimum rate
points. Since for any b € R?, b-£ — A, (b) < A% (€) and equality holds if and only

if b = x¢. Let us choose maximum $; such that 25, - —Ap(zs;) = max {zp,; -
i=1,2,...,m

§—An(zs;)}. Then we have —A*(&)— (x5, -{—An(xs;)) > —2A%(&) > —2A*(B,).
The equality holds if and only of 5; = £ which is the MRP. Therefore, if £ & £,
we have the strict inequality, and therefore m, can not be asymptotically effi-
cient.

As Bucklew ([4]) points out, if we miss few local minima in creating 7*,
the twist may sill be asymptotically efficient if the contributions from those
missed local minima are small or not important. Furthermore, even if the
set of local minima may not be finite or B, is concave, Ve > 0, one can al-
ways find a finite numbers of local minima {31, B2,,,,,3m} such that B, C
U, Hg,, and A*(8;) > A*(B,) —e. Therefore, one still have the relation:
lim sup,,_, o, = log(M2(m,)) < —2(A*(B,) —¢). Thus, the asymptotical effi-
ciency is obtained by letting ¢ — 0. The importance twist can be constructed
similarly as:

w(2) = f@) Y e TN, Y o (25)



3 Numerical Results

3.1 Results: Simple Portfolio

At first we tested simple portfolios for 2 dimensional cases (meaning 2 risk
factors using regular stock and an in-the-money call option) and 8 dimensional
cases (8 risk factors with various combinations of short/long positions of in-the-
money /out-of-the-money call/put options and regular stocks). The detailed
descriptions of these portfolios are found in Appendix B, and tables for these
test results are located in Appendix C. In all cases, the risk factors are assumed
to be correlated with each other. Tests were performed for various confidence
levels, and holding periods to see how each method (importance sampling versus
control variate) contributed to the reduction of errors. We performed non-linear
optimization with both Gaussian and exponential twists. For all these tests, ini-
tial mean candidates are computed using the GHS method ([25]). Then, the
non-linear optimization is used to locate all local minima. We also performed
optimization with several initial guesses which are different from the GHS re-
sult. We shall use variance ra2ti0 to study the effectiveness of each method. The

9<Reg.MC>

variance ratio is given by : <M= where g2, /- is the variance for the
T<Each.MC> g

regular Monte Carlo method, and a2< Each.MC~ 18 the variance for each Monte
Carlo technique applied. The higher variance ratio means better performance.
In this section, we shall define the term ’the extreme quantile’ to mean p < 0.01,
and ’the non-extreme quantile’ to mean p > 0.01 (Typically p = 0.05). We shall
also define the term ’the longer holding period’ to mean more than 10 days, and
"the shorter holding period’ to mean less than 10 days (Typically 1 day).

The importance sampling method using non-linear optimization generally
performed well in reducing errors for all cases. It works much better for the
extreme quantile cases as expected from the Large Deviation Theory. Variance
were reduced by a factors ranging from 22 to 50 (Table 1: Case: 1, 3, 5, 7) for
both the GHS twist and our Gaussian twist. Since these portfolios have only
one local minimum and relatively linear, the closeness of the GHS twist and
our Gaussian twist is expected. Especially for portfolio with very short horizon
(Table 1: Case: 5, 6), our experiments showed almost identical variance ratios
for both twists. The exponential twist exhibited variance ratios ranging from
120 to 200 for all extreme quantile cases (Table 1: Case: 1, 3, 5, 7). This is
expected from our reasoning given in the previous sections. The control variate
in combination with the importance sampling method contributed very little to
the extreme quantile cases (Table 2: Case: 1, 3, 5, 7). This makes sense since
the control variate does not work well for the rare event simulation.

For the non-extreme quantile cases, the importance sampling techniques be-
comes less effective (but still better than the regular Monte Carlo). The variance
ratios for the Gaussian twist decrease by factors ranging from 2 to 10 (Table 1:
Case: 2,4,6,8), and the variance ratios for the exponential twists drop to 2 digit
range (13 to 40). This is to be expected from the theory as well. Yet, even for
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the non-extreme quantile cases, the exponential twist maintains variance ratio
of over 2 digits. On the other hand, the control variate method when taken
together with the importance sampling techniques boosted variance ratios for
both the Gaussian twist and the exponential twist by almost 2 to 8 times (Table
2: Case:2,4,6,8). This is so because the control variate method becomes more
effective as the quantile becomes non-extreme. Here we have used a control vari-
ate method using analytic approximation based on Juan Cardenas, Emmanuel
Fruchard, and others ([7]). We shall skip the detail of the application of the
control variate technique to VAR calculation which can be found in ([7], [30]).
Therefore, for the extreme quantile cases, the importance sampling method
alone performs the best. For the non-extreme quantile cases, the combination
of the importance sampling and the control variate method seems to perform
best.

3.2 Results: Complex Portfolio

In this section, we shall describe experimental results for more complex port-
folios. Similar to the previous section, we shall demonstrate the effectiveness of
our new exponential twist density with non-linear optimization. The exponen-
tial twist will be compared against both our Gaussian twist and the Gaussian
twist by the GHS method([25]). The precise descriptions of these portfolios can
be found in Appendix B (Table 2). In these tests, we computed 10-day 99%
VAR probability (p ~ 0.01) for 10 dimensions both correlated and uncorrelated.

Our Gaussian twist seems to perform similarly with the GHS method for
many portfolios with one local minimum. However, for delta-hedged portfolios
with multiple local minima, our Gaussian twist consistently provided variance
ratio larger than 12 where the GHS method provided variance ratio below 10
(Table 2). The GHS method performed less (variance ratio = 0.34 < 1) than
the regular Monte Carlo method for a portfolio with DAO (Down-And-Out)
calls delta hedged with CON (Cash-Or-Nothing) puts. This portfolio is discon-
tinuous and its delta is zero, so the Taylor approximation used by the GHS
method becomes inaccurate. This point was mentioned by the GHS paper as
well ([25]). On the other hand, our Gaussian twist still gave 2 digit variance
ratio (1.213E+01). This experiment demonstrated that our method succeeded
in locating multiple local minima, and creating twist based on these points.

Our experiments confirmed that our exponential twist outperformed both
our Gaussian twist and the GHS method by factors ranging from 2 to 30 for all
portfolios including ones with multiple local minima. Variance ratios for the ex-
ponential twist are anywhere from 22 to 400. In some cases, it went over tripple
digits (1.12E+03). It appears that the exponential twist resulted in near tripple
digit variance ratios for many portfolios. Our experiments support our claim
in the previous section that the exponential twist should outperform Gaussian
counterpart at least by a factor of 2. Therefore, the exponential twist combined
with non-linear optimization is an excellent method for rare event simulation.
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4 Summary

In this paper, we have demonstrated effective simulation methods for rare
event simulation in finance. In particular, we have applied our methods to com-
pute VAR probabilities. The proposed algorithm is based on importance sam-
pling combined with non-linear optimization with our new exponential twisted
density. The idea is to use a convex combinations of exponential twisted densi-
ties along the direction perpendicular to the VAR surface at each local minima
B which are found by non-linear optimization. Our experimental results have
shown that this method outperforms the Gaussian twist with shifted means.
Experimentally variance ratios for our new twist were significantly larger than
the Gaussian counterpart for virtually all portfolios by factors ranging from 2
to 30. The effectiveness of this method was shown analytically by the Laplace
method (the asymptotic approximation theory) as well (Appendix A). Even
from the Large Deviation Theory point of view, we have shown that this method
is asymptotically efficient if all local minima are taken into account.

The byproduct of these experiments is the confirmation that all other ana-
lytic based importance sampling techniques fail when there are more than one
local minimum. This happens for various delta-hedged portfolio as indepen-
dently confirmed by GHS ([25]). Another discovery of our study is that for
portfolios with non-extreme quantile and one local minimum, the combination
of the control variate and the importance sampling method outperformed the
importance sampling technique alone.
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APPENDIX A: Analytic Efficiency Formula for
Importance Sampling

A1 Introduction

In this section, the effectiveness of both Gaussian and exponential impor-
tance sampling twisted densities (introduced in section 3) will be shown for
computing VAR, probability. This will be done by computing ’efficiency’ ana-
lytically. We shall define the term ’efficiency’ of method 2 over method 1 as the
variance ratio of these methods (i.e., Z—g where o7 is the variance for the method
1, and o2 is the variance for the method 2). If efficiency is greater than one,
then the method 2 is said to be more efficient than the method 1. At first, we
will treat the VAR region B, as a d-dimensional sphere and derive the efficiency
formula for both Gaussian and exponential twists over the regular Monte Carlo
method. Then we extend the results to more general convex set B, for the rare
event scenarios to show analytically that the exponential twist outperforms the
Gaussian twist significantly. The analysis will be done using the Laplace method
for rare event simulation. This section confirms that for rare event simulations,

the tail of distributions for V' behaves like an exponential distribution.

A2 (B,: d-Dimensional Sphere)

Let us also assume that our portfolio V' contains n securities V;, i = 1,2, ...d
so that V = Z:?VZ Let us assume that the portfolio function V' is smooth
enough to allow Taylor expanding ! V as follows:

ov

1
V-V, ~ —EAt—éT-AS—§AST-F-AS:—@At+Q (A1)

where V,, is the initial portfolio value, and

e e
v oV v
L and D= | e e ] a
851’ 85>’ " 9S4 g il
854051 054054

with a correlation matrix ¥;. Let us perform the Cholesky decomposition for
¥, to get C so that CT - C' = %,. Let us also apply the Schur decomposition

I Here, Analytic approximation is made for analysis purpose only. Unlike, the GHS method,
the optimization algorithm explained in this paper does not make any analytic approximations
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of £, so that CT - (i) - C =U-A-UT where U is an unitary matrix. U
is an orthogonal matrix whose columns are the corresponding unit eigenvectors
of CT -, and A is a diagonal matrix for the eigenvalues of C7 - (—=iT) - C.
By letting C = C - U, b = =67 - C, and AS = C - z where z is a vector of d

independent standard normals (with mean zero and variance one), we have:

V-V, ~ %‘;AHQ_—@N—&T AS — AST-F-AS
= —OAt—6"-C-z—(C-U-2)T (== ) (C-U-2)
d

= —0At+ bz +a2T Az = —6At+2bwl+>\w (A.3)
=1

where A is an diagonal matrix which can be rearranged as:

A1 0 0 0
0 Aa 0 0
A=l A>3 (Ad)
0 0 Ai—1 O
0 0 0 Ad
and the set {\;} are the eigenvalues of —3T'- ¥, so that A = —1C7 -T'-C, and

C -CT = ¥,. Furthermore, without the loss of generality, let us assume that
—0OAt =0 (Otherwise, one could always translate the V' —V, by this constant).
Therefore, the VAR probability is given by:

d d
PV -V, <—v) ~ P biwmi+» iz} <-v) (A.5)

where 2 —v is a given VAR. Let us further assume that b; = b and \; = XA > 0
for all i (Other cases are similar). Dividing the expression for both sides of the
inequality inside the above probability expression (A.5) by A, the probability
expression becomes:

d d
p=PV-V,<-v) ~ PO axi+» ai<-V) (A.6)

where V = X, and a = % This is the probability of underlying process falling
inside a sphere in a d dimensional space. If one drops the assumption that the
coefficients b;, A; are the same constant, then the regions of interest changes
from a sphere to a n dimensional ellipse or parabola.

Computing this quantity via Monte Carlo simulation can be intuitively im-
proved by shifting the mean from origin to a point where it is the shortest

2Tn our main paper, v was denoted as VAR. Here, we shall treat v as a positive number,
so the VAR is -v. The reason will be made clear later.
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distance from the origin to the sphere in question. Finding this point gives the
most dominant direction which influences the probability computation most.
Let us call this point 8. This should be the local minima for this model prob-
lem. There are two candidates for the importance sampling twisted density -
the Gaussian distribution m,(z), and the exponential distribution 7. (z) given
as follows:

1 _eio)@in”
m(x) = \/ﬁe 2 (A7)
me(x) = peP Tz <p. (A8)

Since B, is a d-dimensional sphere, one can rotate the region to one of the
coordinate, say z1 (Figure 2). Thus, § for m.(z) is a scalar (> 0), and 7. (x)
is constructed at (—4,0,0,...0) away from the origin. With a slight abuse of
notation, 3 for m,(x) is meant to be a vector (—4,0,0, ...0). Obviously, the new
density with the shifted mean would sample more near the region of interest, so
the variance is expected to be smaller. In the next section, efficiency formulae
(defined as the variance ratio between 2 different method) will be analytically
computed, and explored in full detail. We shall provide a simple theorem con-
cerning variance ratios for both techniques. It is based on computing integrals
by a change of coordinates and an application of asymptotic formula called the
Laplace method.

Thorem 4.1 (Analytic Formula for the Monte Carlo Efficiency)
Suppose we have the assumptions as given in the previous paragraph. Let us

define the Monte Carlo efficiency as ;’TZ where o2 is the variance for the prob-
M

ability in (A.6) using the reqular Monte Carlo method, and o3, is the variance
for the same probability using importance sampling (either Gaussian or expo-

; : .. 2 p—p®  _ 1—p
nential twist). Let us define the Ef ficiency = ;TM = WG = Ty and
B= @ —y dfﬁ —V where V € [0, %ﬁ]_ Then % and p are given by:

S -p+t] . va ()
e 2 482 ' 8p4 5 . .
% ~ 2 -+ ] \/%*VHB] if Gaussian
N P . |
Varh =25 + 5] if Exponential.
62

U L !
PR gt BB {1+¢%}%

Furthermore, as § becomes larger, we have:

2
Ef ficiency ~ { Const x e= if Gaussian

2
Const x Be% if Exzponential.
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NOTE: The above expression is an asymptotic approximation. Therefore if 8
is large, but not large enough, it is best to use only the first 2 terms inside the
bracket in the expressions above to get:

82 L )
e~ 7571 o ] : if Gaussian
% ~ 2 [176%] #—V-ﬁ-?ﬁ
P e_g 1- 2% if E tial
VanB 1 5] E
BZ
~ oy :
PE Vs B

——
e e

Proof: Transforming the probability in question gives:

d 2
_ 5 = a. o da _
p = P(;axl+xl < -V) _P(;(a:,+ 5) < -7)
2
= P((z1 + @)2 + r7 < d% -V) (A.9)

The above step in (A.9) is justified, since the probability of a region occupying
a particular space in in d dimensional standard normal distribution space is
invariant under rotation (See Figure 2). Furthermore, let us define Z, 8 (which
is a local minima for this VAR region) as follows:

_ Vda da®> - Vda da? -
:T_\/T_V_Zx%’ b=y V. (A0

i>1

Then p can be expressed as:

__Ezd x2/2 !
.. e i=1 " H dCUZ
z2>0} 21<—7F i—1

>1 %
7Zd z2/2 1

/ e i=1"" Hda:i
1>T i=1

In general, for a large value y, one can approximate a Gaussian type integral with
simple asymptotic formula as follows by applying the Laplace method [Copson,
p-39], one can have the following approximation:

/ e Ay = / e~ WHe—u)*/2 gy
>y >y

24

2m / R d _V_E
p
( )2 z;ER,i>1,{ 32 v i

5
B (27)% 2 €Ri>1{42 V-3 ?>0}




X2

Figure 5: 2 Dimensional Case: Since the probability density is a Gaussian
centered at the origin, the probability of the two shaded regions are the same.
Note that size of 3 tells how much the new density is shifted away from the
origin.

— V2 / e~ (@=n)y—(z=)*/2 1.
>y
= V2 / e~V 2 gy (A.11)
r>0
By using the Taylor expansion for e~""/2 &~ 1 — r2/2 + r*/8, we have :
~ eV / e[ — 7?2 /2 +r*/8)dr (A.12)
r>0

(Note that the error terms above is of order o(y), this is the crusial part of
the asymptotic approximation in that it is accurate for a very large y). By
successively performing integrations by parts yields:

= VP y— 1y +3/y7) = eV P Y[l - 1)y + 3/y']

Thus, using the above result in the z; integral which is the most dominant
integral, we have the following approximation:

1 1 3. p ¥y a2t
J / - =+l 17 T das
wiE€Ri>1{42 V=)  a?>0} (2m)2z z x e}

This integral can not computed analytically. However, using them fact that g
and z is very close enough, Z in the denominator can be replaced by 5. This
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can be seen by the following approximation for z:

7 Yda \/d;'ﬂ_v N (G Y ST
N

d da? 1Y, 27 T
o Y I g 1Tt sy Tet
TV 2,/

Note that since 24/ %‘2 — V term is very large, and the variation for the non

essential coordinates are small, Zi>1 z? term is very small. Thus the entire

2

Fin

i %
2

expression — is small compared to the order of magnitude of 5. Thus

aa=

we can use the relation Z ~ § in denominator for the probability. Therefore,
the probability can be approximated as:

1 1 3 /2= d
—z2/2— z2

p = 741——4-—/ e i>11||d;gi

(271’)5/3[ B2 ﬂ4] @ €R,i>1,{42 V- 22>0} .

i>1 7= i>1

72

Furthermore, z° can be approximated by keeplng only up to the second power

of LL Therefore, we have z2 ~ §2 + CORNE , and

Va2 oy a2y’

B2
ez 1 3 o /2 S
p o~ [1——+—]/ >tV day
(271')56 gz gl @i €R,i>1,{ 422 —V-3. o, 2>0} E
where « is given by a =1 + #2 The last remaining integrals are multi-

des_y
dimensional integrals in d — 1 dlmensmns This can be analytically computed
exactly by transforming into multi-dimensional spherical coordinates, and gives
the followings:

fgu_i+iFi_/
P Vergt B BN (am) S Jreris1 {22 ov-Y, a0y
d
efoz/2z >1I?Hd$i
i>1
e_% 1 3 1
= \/ﬂﬁ[ —E ﬂ4]{ }d—l{ _8}
e_% 1 3 1
_ _ 2 el A.
il T E el e —
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where € is expressed as:

_ ) ) ap?
%f_fp __dy_i_\/’a( ){2[71 ]%p(d—m)}e_T S d = odd

4 [%5H] 1 d—2i _ep? . o
ol 2 {1+ 3003 WP( Ve if d = even.

E =

and, p = \/%‘2 -V. Furthermore, since € is very small and therefore can

be dropped from the expression for p, thus we have:

e~z 1 3 1
4+ = —. A15
CRR T e — (4.15)
da? _y;
(e
Note that this is basically the same as integrating the remaining n — 1 integrals
for the entire R(?~1) space, rather than computing for the domain given by:
2 —
{mi€ Ri>1,{% -V -3, a7 >0}}.
Next we will compute the expression for the second moment using the Gaus-

. . . . . . (z48)2
sian twisted density with the shifted mean 8. Since my(z) = \/%—We* =3 ,

and f(z) = \/%e é, the second moment M (g) for the probability under the

Gaussian twist is given by:

@i €R,i>1,{ 422 —V-).., #3/2>0} T1<—Z

( sl )’ (1)day [ f(x:)das

(1) i>1

1 (21482 _1 2
- T R
o) 4 m+m2 v
@2m)% Jocor  Jri<—z e i>1

2 (2248)2
_ 1 i / / _x1+1T_Zz>1ml/2Hdwi
(277)5 z,€0; 1<% ;

i>1
_ 1 ; / / fz?+z1ﬂ+522 >1I’/2Hd1‘
(271')5 T;€0; r1<—T i>1
B> e ﬁ)
& (21 —B)"
= d/ / e 2isn 1/2Hda:,
(271')5 T;€0; r1<—T i>1
B> ¥2
e
= Z / / e z>1zl/2ddea:
@2m)z Jueo;, Jiri<—z-8 i1
where ©; is the domain ©; = {z; : 7; € Re,i > 1,{% -V — ZZ>135 > 0}.

Applying the Laplace method as before into the above moment expression, and
simplifying it further yields:
3

e 1
//@ et ipl  GrRE  GrAT
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(z+8)2

S L

i>1

By looking into the approximation formula for Z and Z2 in terms of 3 which were
given in the previous section, one can easily realize that £ can be approximated
reasonably by [ for the denominator of the above moment expression. Thus:

N 662 (5+26)2 >1 22 /2
Milg) = (QW)%(M)[ (26 26 / / [T

i>1

Expanding the expression inside the exponent by putting the approximation
formulas for Z and #2 gives:

5° L
¢ a2 2T g
et e [T dz

i>1
6_32 el
(%)%(m)[ (2ﬂ 2ﬂ 4]/ /xlee Bt Hdm’

i>1

Q

28

where ag is given by ag =1+ — This is the familiar expression which
o2y

4
can be analytically computed in the multi-dimensional spherical coordinates to
give:

v B e B’ . 1 3 1 (5= .
e s’ ho ! 3 .1 (%)

aren T @ T @ s

e B 1 3 %2 -V

= [1- + I( ) (A.16)
27(2 2 2 2 4 02 —
V21 (20) (28) (28) /dT_V+25

where

2 —VaGp ¥t 2 (%) 4] 2570 (d—2i)y,— 2625

=] o € Tdy+,/ta {Z 17/) le==5 - if d = odd
I . V2ed S

O‘(E){l + i3 — P(d_m)}@ % if d = even.

. d_;
ab (g—i)2(a =9

The efficiency of two different Monte Carlo methods is defined as the vari-
ance ratio of these methods. Thus by using (A4.15) and (A.16), one can ge the
following efficiency formula for the Gaussian case.

2

ieney = - PP 1-p

Ef ficiency = o3 My(g) —p>  M:la) _
P
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where

(451)
-+ %] Vda 2
83 2
A7
T ) (A1

V92—V +28
This is what we need to prove.

For the exponential case, the arguments are similar. Let us introduce a
new exponential density along the most important direction (z; coordinates).
For other coordinates, let us use Gaussian distributions as argued in section 2.
Since the twisting is done with 7, (z) = 3e#(*+8) in z; coordinate and Gaussian
densities for other coordinates, the second moment M- (e) under the exponential
twist is expressed as:

MQ (6)

/xieR,i>1,{%—V—zi>1xl?/QZO} --./xl<_i
f(z1) -

7re(xl)

) 7e(z1)dzy Hf )dz;
i>1

EY

=

T ®
1:1691 z1<—

i>1
o T B@HB) D 22T s
/z1< T H ’

NI

- W/zveev

d+1
{€0; i>1
-2 5
= u/ / e~ TimhT - >1xl/2Hdm
B2r) =z Jeico: Jri<-z i>1
52182
_ e B +d41 / / e*(z%+%)2 l>1zl/2Hdw
ﬂ(?ﬂ')T T, €0; r1<—% i>1
_32+ﬁ
e 4
= — / / Diisn T2 d?JHd-Tz
B2m) "z Jaeo; y<—f+§ i>1
=B _;,_5 =2
= d+1 / / e’ P >1 " /2dy H da;
V2B3(2r) g<—V2r+ L i1

where ©; is {z; : x; € Re,i > 1, {%‘2 -V =3, 27 > 0}.
Applying, the familiar Laplace method to the above expression gives:

e’ +or 3. ¥ #i)2
~ Vs "“/ / 7= +ﬁe o1 [ de
71' r;€0; 1

i>1

where : Y = /2% — % Using the fact that Z and 3 are so close together, Z in
the denominator can be replaced by . This allows the fraction to go outside
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the above integral to give

X

2,82
e+

4

1
1—
m(%)d%(%)[ (55)?

/ / 7172/2 >1 x2/2

H dx;
Using the formula for Y above, and the approximation formula for Z and Z° in

i>1
terms of 3, the second moment can be further approximated by

1 3 _a E 22
d [1- / / 2 Lwi>1 Hdl'i
V2BRm) () ()2 JEaT
where « is given by: a = 1 + = This can again be computed in the
o2y
spherical coordinates to yield ’
-B° 1 3 (=)
e
Ms(e) = [1- + =) {l+e}
Vasem(5)" (R (L)
-B? (%)
e 1 3 1 2
= [1- + I( ) {l+e}
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T VEBen(G)T (G (&) 1A=
V2 V2 V2 [
where ¢ is given by

F -Tdy+[a< Rhv
a( i+l

iyt ) (d—2i)
1

. o 2
Z =) te= ifd=odd
(d 21) - g i =
o p te if d = even.
Therefore, the efficiency for the exponential twist is given by
o? p—p 1-p
E cl = _— = =
fficiency o3 T (o) —p | e,
where
My (e) e~ [1- g + 5]
= T T (A.18)
p B\/Qﬂ'[].—?‘i'@]
This is what we need to prove
As for the proof of the estimate of efficiency as 3 goes infinity, one can obtain
the estimate by simply putting the previous results together as follows
Ef ficiency = UT:M —15 NA’/} =
o Fop ol 3R 3

P
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Therefore, taking the limit of % for both Gaussian and exponential twist gives:

d—1
P—

1 2 1—L—{—i \/dL—V+26 2

e 26%[ Lf B;][ ! 7 ~ Const x e

2 1 - 1= + 5] e

1 22 [1— gz + 3] 2

m = B QWCQ%NCOTLStXBCQ (Alg)

) - &+ 12

The last step is justified since 3, Vda  and 1/%‘2 — V are almost of the same
order of magnitude.

QED.

The 8 above basically tells how far away the new mean is shifted from the orig-
inal distribution. Therefore, the bigger the £, the more efficient the importance
sampling would be. Furthermore, this theorem shows that the importance sam-
pling using the exponential twisted density is more efficient than the Gaussian
twist at least by a factor of 3.

A3 (B,: d-Dimensional Convex Set with Low Cur-
vature)

So far we assumed that the VAR region is a sphere in R?. However, we can
make more powerful statement about the efficiency of the exponential twisted
density for general cases using the theorem above. Without the loss of gener-
ality, let us assume that the density is uncorrelated, and B, is convex. From
the Large Deviation Theory (LDT: Section 3), if 8 is a local minimum, then
the importance twist is created at 8. Typically p = P(B,) is very small by
the definition of VAR. Therefore, B, is located farther away from the origin.
Therefore, one can find a open set (a sphere) K such that P(K) = P(B,)+o(1).
K can be chosen so that the curvature of K is the same as the curvature of B,
at 3, and K touches B, at 8. Typically, B, is shaped like a half space with
some curvature at 4. If the curvature of the VAR region B, at § is very small,
the center of K has to be located very far away from the origin to cover B, and
keep the same curvature as K at the same time. This implies that the radius of
K must be very large. Using the same notation from the previous theorem, the

radius of K can be expressed as 4/ %‘2 — V. Therefore, we have 4/ %‘2 -V> 8.

Thus, there exists s > 0 such that \/%‘2 — V = B'*3. We have shown that the
exponential twist is more efficient than the Gaussian twist by the order of 3.
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We shall show that for large enough s (smaller curvature of B, ), the exponential
twist exhibits the efficiency of 8% over the Gaussian twist for this case.

Thorem 4.2 (General Theorem: The Efficiency for the Exponential

Twisted Density)

Suppose we have the assumptions as given in the previous paragraph. If s > 4,

the variance for the exponential twist decreases (or more efficient) faster than

the Gaussian twist by a factor of B° for large B. To be more precise, we have:
Ms(g) —p° V2np®

Efficiency = M2(6)—p2: 10 (1+ of

Bmin(17s—4) ))

Proof: From the previous theorem, we have the following results:

P U S - +o(1)
Vergs B B! {1+\/_B_}2
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VIeR) B B ()
8_62
Mae) = Gll- 5+ i) s+ ol)
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These can be simplied as:
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B

e" = 1 3 1
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e=h’ 1 3 1
M — _
2(9) m@ﬂ) [1 (2B)? + (Qﬁ)4]{1 " %}% +o(1)
e 2 1
M(e) = o 1- 7 B4]W o(1)
For large 3, we have: ﬁ =1—Z +o(gs). If s > 4, then we can reduce
the following algebra as: ’
2 12 1 3 2 1
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= lrpEtmE Ut Et e o)
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Therefore, M (e) — p? becomes:

M) —pt = 1
2 p - 271—62 {1_'_#}%
2 e o 3e 2 1
[(1 2 +B4) (1 7 +B4) (1 55 +0(62s))]
e 1 5 1 5eh 1 1
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Similarly, we can compute Ms(g) — p? as:
-2 1
My(g) —p* = =
2(9) p \/ﬂﬂ {1+%}%
11 3.1 13 {1+ F)F
e e TR TR e e W
e 1 11 e 1 1
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Therefore, for large 8 we have:
" _ My(g9)—-p* e’ 1. 2738 1
Ef ficiency = V(e) — 12 _2\/%[3(1+O(B))56752(1+0(5574))
V2r P 1
= o+ oG

QED.

A4 Computational Results

For illustrative purposes, several experiments have been performed to check
the accuracy of the formula given in the previous section. 5 different cases are
investigated. In each case, 10,000 iterations are run for portfolios of 10 indepen-
dent underliers (10 dimensions). The deltas, the gammas, and the VARs are set
forth as follows:

[Table Al: Data]
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| Case |

Delta

Gamma,

VAR

1 4.619649e+-001 3.765770e4-000 -3.292969e+-002
2 4.649649¢e+-001 3.765770e+4-000 -3.900297e4-002
3 4.009649e+-001 3.765770e4000 -2.539715e+002
4 4.919649e+-001 3.765770e4-000 -1.939715e+002
5 4.619649e+-001 3.765770e+4-000 -2.053972e4-002

The following table shows the results for the Gaussian cases. One can notice
the closeness of the analytic approximations to the simulation versions.

[Table A2: Computational Results for the Gaussian Case]

| Case | Simulated Prob. | Analytic Prob. | Simulated 0> | Analytic ¢” |

1 4.007706e-3 4.219097e-3 5.946114e-5 6.26320e-5
2 9.372176e-4 9.965419e-4 3.890290e-6 3.94848e-6
3 2.403404e-4 2.508348e-4 3.111087e-7 3.21520e-7
4 2.496546e-4 2.427197e-4 2.590840e-7 2.59308e-7
5 1.381156e-5 1.334211e-5 1.079736e-9 9.85356e-10

The next table shows the results for the exponential cases. One can similarly
notice the closeness of the analytic approximations to the simulation versions.
One important observation is that the variances for the exponential cases are
smaller by additional factors of 4 to 17 than the variances for the Gaussian cases
as expected from the theorem.

[Table A3: Computational Results for the Exponential Case]

| Case | Simulated Prob. [ Analytic Prob. | Simulated 0> | Analytic ¢°

1 4.022585e-3 4.219097e-3 1.396714e-5 1.306192e-5
2 9.297350e-4 9.965419e-4 9.869584e-7 9.947712e-7
3 2.483174e-4 2.508348e-4 6.012005e-8 6.042611e-8
4 2.429384e-4 2.427197e-4 1.580104e-8 1.468649¢-8
5 1.368510e-5 1.334211e-5 6.705168e-11 | 6.681958e-11

The next table illustrates how variances for each Gaussian and exponential
twists become smaller as 3 becomes larger. It is clear that the variances for
the exponential twist become smaller at much faster pace than the Gaussian
twist as 8 becomes larger. This is to be expected from the theorem as well (in
asymptotic sense).

[Table A4: Variance Ratio Results]
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| Case | Gaussian 0” | Exponential 02 | Variance Ratio | B
1 6.26320E-5 1.30619E-5 4.79501E+0 2.40300E+40
2 3.94848E-6 9.9477T1E-7 3.96923E+0 2.86250E+0
3 3.21520E-7 6.04261E-8 5.32087E40 3.28620E+0
4 2.59308E-7 1.46865E-8 1.76562E+1 3.42170E+40
5 9.85356E-10 6.68196E-11 1.47465E+1 4.12440E+0
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[APPENDIX B: Data Used for the Numerical
Results in Section 5]

[Data Used for Table 1: °2 Dim. Case’]
# of Assets = 2, Risk Free Rate = 0.07, Initial Values =[18,24]
Volatility sets for each = [.2,.18], Drift =[.09,.12], Cross correlation = 0.25.

Portfolio Characteristics:

(1) Long 150 on the first security & Long 20 Calls on the first security struck
at 23, expiry=0.9 yrs

(2) Long 100 on the second security & Short 20 Puts on the second security
struck at 22, expiry= 0.7 yrs

[Data Used for Table 1: 8 Dim. Case’]

# of Assets = 8, Risk Free Rate = 0.07

Initial Values =[35,45,10,32,70,30,48,21]

Volatility sets for each assets =[.2,.23,.3,.2,.14,.11,.16,.21]

Drift =[.15,.09,.12,.08,.04,.1,.085,.09]

Correlation Matrix Used =
[1.0000,0.0497,0.1579,0.0648,0.0744,0.0498,0.0507,0.0583;
0.0497,1.0000,-0.0843,-0.1134,-0.1916,-0.4140,0.4857,-0.2857;
0.1579,-0.0843,1.0000, 0.1474, 0.4641,-0.0192,-0.0889,0.5782;
0.0648,-0.1134,0.1474,1.000,-0.2782,0.3582,-0.3612,0.0268;
0.0744,-0.1916,0.4641,-0.2782,1.0000,-0.192,-0.0101,0.5875;
0.0498,-0.4140,-0.0192,0.3582,-0.1920,1.0000,-0.0715,-0.0865;
0.0507,0.4857,-0.0889,-0.3612,-0.0101,-0.0715,1.0000,-0.25611;
0.0583,-0.2857,0.5782, 0.0268,0.5875,-0.0865,-0.2561,1.0000]

Portfolio Characteristics:

(1) Short 30 on the first security

(2) Long 13 on the second security & Short 400 Call on the second security
struck at 49, expiry= 0.8 yrs

(3) Long 10 on the third security & Long 200 Puts on the third security struck
at 12, expiry=0.9 yrs

(4) Long 21 on the fourth security & Long 10 Calls on the fourth security struck
at 30, expiry=0.52 yrs

(5) Long 100 on the fifth security & Short 100 Puts on the fifth security struck
at 68, expiry=1 yr

(6) Long 300 on the sixth security

(7) Long 230 on the seventh security & Short 300 Puts on the seventh security
struck at 50, expiry=0.6 yrs

(8) Long 49 on the eighth security
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[APPENDIX C: Computational Results]

[Tables 1
Examples]

2 Dimensional and 8 Dimensional Portfolio

p = The probability, GHS Ratio = Variance ratio by the GHS method, Gauss. Ratio
= Variance ratio by Gaussian twist with optimization, Fzp. Ratio = Variance
ratio by exponential twist with optimization, v = VAR, t= Horizon in years,
Number of Iterations = 50,000. Refer to Appendix B for the detail descriptions

of ’2 Dim. Case’ and ’8 Dim. Case’ portfolios.

(Test Case Scenario Description)

(1) 2 Dim.
. Case, v=4560, t=.3288, Non-Extreme Quantile Long Horizon

. Case, v=4825, t=.0274, Extreme Quantile Long Horizon

. Case, v=4907, t=.0274, Non-Extreme Quantile Long Horizon

. Case, v=5010, t=.00274, Extreme Quantile Short Horizon

. Case, v=5035, t=.00274, Non-Extreme Quantile Short Horizon
. Case, v=26400, t=.0822, Extreme Quantile Long Horizon

. Case, v=27451, t=.0822, Non-Extreme Quantile Long Horizon

[Table 1.1: Importance Sampling Only]

Case, v=4100, t=.3288, Extreme Quantile Long Horizon

| Case | p GHS Ratio | Gauss. Ratio | Ezxp. Ratio |
(1) 1.0208E-02 2.28312E+01 2.49433E+01 1.26454E+02
(2) 5.0104E-02 7.12314E4-00 8.07231E+00 4.84211E+01
(3) 1.0314E-02 2.35212E+401 2.98211E+01 1.39213E+02
(4) 5.1355E-02 5.91344E+400 6.12322E+400 4.02126E+01
(5) 1.1443E-02 1.92112E+01 1.93212E+01 1.20121E+02
(6) 4.9436E-02 2.10012E+400 2.03112E+400 1.32122E+01
(7) 3.7103E-03 4.98991E+01 5.12133E+401 2.23111E+402
(8) 6.7008E-02 9.08113E+400 8.99121E+400 2.01221E+01

[Table 1.2: Importance Sampling 4+ Control Variate]

| Case | p GHS Ratio | Gauss. Ratio | Exp. Ratio |
(1) 1.0203E-02 2.76823E+00 2.98322E+01 1.28212E+02
(2) 5.0111E-02 1.62123E+01 1.73212E+01 6.34222E+01
(3) 1.0268E-02 2.33312E+01 2.99222E+01 1.38211E+02
(4) 5.0999E-02 8.26311E+400 9.14878E+00 6.51211E+01
(5) 1.1312E-02 4.13221E+01 4.19211E+01 1.75212E+02
(6) 4.9521E-02 1.81211E+01 1.78211E+01 4.42113E+01
(7) 3.7914E-03 4.76665E+01 4,99121E+01 2.02121E+02
(8) 6.7123E-02 4.89112E+01 5.01213E+01 1.09312E+4-02
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[Tables 2. 10 Dimensional Case, Quantile ~ 0.01, Hori-
zon=10 days]|

(Assumptions)
Number of Iterations = 10,000
Number of Assets = 10, All Uncorrelated
Initial Values for all Assets = 100 , Volatility for all Assets = 0.3
Expiry for Portfolio (1-3) = 0.5 yrs , Expiry for Portfolio (4-8) = 0.1 yrs
Risk Free Rate = 0.05, Dividend or Growth Rate =0.0
Reverse Probability = 0.01 (99 %)
P&L Horizon = 10 days/250 trading days (t=0.04)
Barrier for DAO option = 95

"DAQO” stands for Down-And-Out option, "DAI” stands for Down-And-In
option, and ”CON” stands for Cash-Or-Nothing option (or sometimes called
”digital”). ” Variance Ratio” is the ratio of variances =
Variance(Reg. MC)/Variance(Importance Sampling). Here, ’'GHS Method’
refers to the importance sampling method proposed by GHS(Glasserman, etc)
based on analytic approximation (See Appendix B). ”Optimization Method”
refers to the importance sampling method using non-linear optimization method
(sometimes involves multiple local minima). The word ”Puts” are assumed to
be plain vanilla European puts, and ”Calls” are assumed to be plain vanilla
calls. All options in this experiments are assumed to be European ATM (At-
the-Money) unless otherwise stated. The first set of portfolio is described as
follows:

(Portfolio Description)

10 Short Calls, 5 Short Puts.

10 Long Calls, 5 Long Puts.

10 Long Calls, 5 Short Puts.

10 Short Calls, Puts Delta Hedged *.

(1)

(2)

(3)

(4)

(5) 10 DAO Short Calls, 5 Short Puts.
(6) 10 DAO Short Calls, Puts Delta Hedged *.

(7) 10 DAO Short Calls, CON Puts Delta Hedged *.
(8) 10 DAO Short Calls, DAO Puts Delta Hedged *.
(9) 10 DAO Short Calls, 10 Long DAT Calls .

(* involves more than one local minimum)
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[Table 2.1: Variance Ratio Test for the Gaussian Twist by the

GHS Method]

| Probability | Variance Ratio | Accepted Points |
1.01533E-02 3.20013E4-01 5011
1.14321E-02 3.41234E+01 5123
1.03943E-02 3.31233E401 4926
1.08323E-02 1.75335E401 4321
1.12342E-02 1.04843E+-01 3850
9.65493E-03 9.18233E400 2534
9.31232E-02 3.12344E-01 320
1.02123E-02 7.34232E4-00 2100
1.03212E-02 3.23423E+01 4532

[Table 2.2: Variance Ratio Test for the Gaussian Twist by Non-Linear
Optimization)]

| Portfolio | Probability | Variance Ratio | Accepted Points |
1) 1.00123E-02 3.31234E+01 5121
1.10313E-02 2.83456E+401 5322
1.04534E-02 3.12223E+01 4926
1.10234E-02 2.12234E+01 5010
1.15623E-02 1.92334E+01 4998
1.00123E-02 1.38283E+01 5200
1.10112E-02 1.21314E+401 4850
1.09101E-02 1.34212E+401 4980
1.00013E-02 3.81234E+01 5032

[Table 2.3: Variance Ratio Test for the Exponential Twist by Non-
Linear Optimization)]

| Portfolio | Probability | Variance Ratio | Accepted Points |
(1) 1.01122E-02 1.29874E+02 9558
(2) 1.04315E-02 1.31235E+02 9856
(3) 1.03531E-02 4.35323E+02 9983
(4) 1.07843E-02 4.65234E+01 9001
(5) 1.11232E-02 4.21433E+01 8992
(6) 1.00834E-02 4.87683E+01 8999
(7) 1.09945E-02 3.21314E+01 9010
(8) 1.08934E-02 3.94342E+-01 8934
9) 1.00023E-02 1.12434E+03 9993
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